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Interaction between randomly charged rods and plates:
Energy landscapes, stick slip, and recognition at a distance

Sergei Panyuk(;vand Yitzhak Rabin
Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel
(Received 12 May 1997

We study the interaction between randomly, irreversibly charged objects. We consider arbitrary relative
displacements of two parallel rigid rods and of two parallel rigid plates, and calculate the statistical properties
of the resulting energy landscape, such as the distribution of the energies of potential minima and maxima, the
depth, the radia of curvature, and the width and density of typical energy wells, as functions of the separation
between the objects and of the Debye screening length. We show that this complicated energy landscape may
lead to stick-slip phenomena during relative displacement of the plates. We study the case of perfectly corre-
lated charge distributions on the two objects, and show that the presence of long range forces may lead to
prealignment of the objects, even before contact. The relevance of our results to interacting biological systems
and to pattern recognition is discussg81063-651X97)11812-9

PACS numbdis): 61.43~j, 68.35—p

[. INTRODUCTION model of interaction between such “proteins.” Second, the
frozen randomness assumption allows us to use some of the
The statistical physics of interacting many-body systemgowerful mathematical machinery that was developed for the
deals with a thermodynamically large number of elementangtudy of systems with quenched disord2y3].
units (atoms, spins, etg. each of which is described by a A well known problem in polymer physics which appears
small number of parameters. This leads to a class of modef® be close to the present one is that of random block copoly-

in which complex physical behavior arises due to cooperaMers [4]. One difference between the random copolymer
tive behavior of a large number of such “simple” units. ~ models and the model studied in the present work stems
from the fact that long range interactions considered here are
sually not taken into account in the former class of models.
ore importantly, while we consider rigid objedt®ds and
plates, standard copolymeiand polyampholyt¢5]) models
are based on the assumption that the “charges” are placed
. . X . : ’bn flexible chains and, therefore, while the linear structure of
pehavpr. A generic system of this type consists of Interacty, o polymers in these models is “quenched,” their three-
Ing ObJ?CtS on which a random @strlbytlon Of charggs 'Sdimensional structure is “annealed(at least in the high
irreversibly placed. From the viewpoint of information emperature phageln this sense random block copolymer
theory, such objects are of “maximal complexity” in the theories can be thought of as generic models for the folding
sense that complete specification of the charge distributiongs proteins, while our theory of interacting rigid objects at-
requires precise information about the location of each of th@empts to capture some of the features of the way folded
charges, the number of which can be arbitrary large, depengroteins interact with their environment.
ing on the size of the objects. In such systems, complex |n Sec. Il we introduce the model of randomly and irre-
behavior can already be observed at the level of two interversibly charged objects interacting through arbitrary long
acting systems, the case considered in the present work. range potentials. The distribution functionumber density
Aside from its maximal complexity, the motivation for of the energy minima generated by the relative displacement
the choice of a random distribution of the frozen charges iof the two objects is defined and replaced by its average over
twofold. First, it is known that many biological systems, the quenched ensembithis replacement is justified in the
such as proteins, can be described as nearly random asseAppendiX. In the following sections we consider two geom-
blies of their constituentfl] (amino acidg each of which etries: interacting parallel rods and interacting parallel plates.
interacts in a different way with its environment. The result- Although other geometries are also analytically tractable and
ing potential energy surface that exists in the vicinity of awill be considered in the future, the introduction of nonpar-
folded protein is extremely complicated. Since a randomellel orientations, and of other geometrical shapes, increases
combination of positive and negative charges interactinghe number of free parameters and obscures the basic physics
through screened Coulomb forces can give rise to potentiaf the problem.
surfaces of nearly arbitrary complexity, the theory presented In Sec. Il we calculate the distribution function of energy
in this work can be considered as the simplest minimaiminima for the case of two parallel randomly charged rods.
We proceed to examine the statistical properties of the inter-
action energy landscape as a function of the distance be-
*Permanent address: Theoretical Department, Lebedev Physit&/een the rods, and calculate the depths, the radii of the
Institute, Russian Academy of Sciences, Moscow 117924, Russiacurvature, and the widths of the energy minima and maxima,

In this work we consider a different class of interacting
systems, namely, that in which the number of parameter:
necessary to specify a single unit is very large. Due to th
inherent complexity of the individual units, even a small
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u . L where the integration is taken over all the points in the two
objects. We assume that the potentigk, —x,—u) depends

i —+F - -+ -7 only on the distance =[(x; —x,— u)?+h?]*”? between the
| h points X; and x,+u on the two objects, and decays suffi-
I

ciently rapidly withr.

The assumption that the charges are randomly distributed
on the rods(plates, with average charge densiy=p.
—p_, leads to a Gaussian distribution of the quenched
variations of densitysp;(x) = pi(x) — p, with the second mo-

i .-+ + 1 ment
* TtA T+ _—
to- - - 9pi(X) dpj(X") =g &j; S(x—x"), (2

.t - F - whereg=p, + p_ is the number density of charges, and the
bar denotes averaging over the ensemble of all possible re-
alizations of quenched disorder on the rods, with the prob-
ability distribution

+ - - + - + - - + -+ + - - + +

b)

FIG. 1. Schematic drawing @8) two randomly charged parallel W[ Sp]=N"~ le=Siop] 3)
rods, one of lengtih. and the other infinite, separated by a vertical
distanceh and displaced by a distance (b) A similar drawing of  \yhere
two plates, one of areA and the other infinite.

5p*(%)
g’ 4

. - opl=| dx

and the average distance between them. Explicit results for Stop] f 2

the above quantities are obtained for randomly frozen charge

distributions interacting via screened Coulomb forces. weand

study the variation of the position of a given minimum as a

function of the separation between the rods. NEJ D[ Sple S (5)
In Sec. IV we carry out a similar program for interacting

randomly charged plates. We then apply our general results o . .

to the stBL/de ofq[he ztick—slip problem pa?n)(/j estir%ate the criti-> th.e il fe}cto(rf D[ép ] denotes functional inte-

cal force which has to be applied in order to produce relativelration over the dengty varla_'uo):_s . .

displacement of the two plates. In Sec. V we study the en- In order to avoid complications associated W|th, the

ergy landscape of perfectly correlated charge distribution%hatrlge ?f toverlfap baeAtweednAtlr;e two rods I?fllg_ngllhmdL i

(mirror image$ on the two plates, and discuss the possibility ortwo pia ef’h;tlri, and u_p()jon parla el tl§p adc_errllen '

of prealignment as they approach each other. The effect of€ assume , and consider only relative displace-

artial correlation of the two charge distributions is also con-M€"tS fpr which the two rods overlap similar assumption,
P 9 A<A’, is made for the case of two plaje¥he energyE(u)

sidered. In Sec. VI we discuss the main results of this work; ted with eul Iati hift of the t biect
and speculate on their relevance to interacting biological sys2>>0Ciated with a particuiar refative shift ot the two_objects

tems, random magnetic films, pattern recognition, etc. differs, in general, from the average interaction endegy

E?MJ dx V(x), (6)
Il. MODEL

Consider two objectgtwo rigid rods or plateson which by an amountE(u)=E(u) —E. HereM corresponds to the
positive and negative charges with local charge densitiekengthL or to the areaA, in the one(rods and the two-
pi+(X) and p;_(x) (the indexi takes the values 1 and 2, dimensional(plateg case, respectively, and the remaining
corresponding to the two objec¢tare randomly and irrevers- integration is over the coordinates of the larger objéct
ibly placed. The frozen(quenched distribution of total andA’ in the rod and the plate case, respectiyely Fig. 2
charge is given bypi(X)=p;. (X)—pi_(X) (i=1,2). The we plot a typical energy landscap&(u) which results from
charges on the two objects interact via a potentialfor  the relative shifu of two rods(this plot was generated by a
example, a screened Coulomb potenti#e assume that the computer simulation of the randomly frozen charge distribu-
two objects are parallel and separated by a disténfrem  tions on the rods, with periodic boundary conditipns
each other and are allowed to undergo parallel displacement The number of energy minima“potential wells”)
by a vectoru, with respect to some arbitrary origin of coor- N, (E)AE with energy in the interval E,E+ AE) can be
dinates(Fig. 1). The interaction energgwhich does not in- obtained from the expression
clude the constant self-energy of the rods or plaiggiven
> Non(E) =, SE-SEWIOA_ (W], (D)

extr

. . where the sum goes over the positian®f all the energy
E(u)_ffdxldxzpl(xl)pZ(XZ)V(xl Xe=U), (I eytrema, each of which is defined by the relation
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i N The expression on the right hand side of this equation is
averaged over the distribution of the charge densjsy on

+ one of the objects with the probabilit¥[ p,], Eq. (3). We
would like to stress that the number of energy minima is

2 determined only by the statistical properties of the frozen

charge distributions, and does not depend on temperature
(temperature effects and the kinetics of interacting objects
- are not considered in this workWe now proceed to discuss
the energy landscape of two parallel rods.

Ill. PARALLEL RODS

A
0 5 10 15 20

u A. Distribution of energy minima

The sum over the positions of energy extrema in Eq.

H H 1/:
FIG. 2. Plot of the energy landscapg(u) (in units ofgL™") as (11) can be transformed into an integral over the continuous
a function of the relative displacement (in arbitrary units of variableu

length), for a randomly chosen realization of disordered charge dis-
tributions on the rods. The solid line correspond$itel, and the

crosses correspond to=0.5. D= duY, S(U—Ugg)
ext ext
dSE(u)/du=0. The 6 function in this expression ensures
that only energy minima are counted among all extrema. For = J du &{d[ SE(u)]/au}| o’ SE(u)]/au?|...,
two parallel rodsp is a scalar and\ _(u) = d?8E(u)/du? is
the inverse squared radius of curvature of the energy mini- 12

mum, which is a measure of the “stiffness” of the effective , ,
“spring constant” associated with the potential well. In the WNEre Ue are the solutions of the equatiof SE(u)]/du

case of two parallel platasis a two-dimensional vector, and =0 (in general, many such solutions eyish order to deal
A _(u) is defined as the minimal eigenvalue of the matrix of With the ¢ function in Eq.(11) we represent it in the form

second variations of the energy), with components

(A —fwdA S A PLoEW)] 13
F72[5E(U)] ( 7[“])_ 0 _—auz_ . ( )
EeplW= 50 a0, ®
«mp Substituting Eqs(13) and (12) into Eq. (11), and changing
This minimal eigenvalue is given by the order of averaging ovebfp, and integration ovemu
E LE (which gives the length.’ of the “infinite” rod), we obtain
A,=E+—m, E.= xx; vy @) :if:;followmg representation for the energy distribution func-
Note that if we change the sign of the potentigl the ———— [~ 1 — S6p,]
minima and maxima of the energy are interchanged. Thidmn(E)=L 0 dA A N DLp.le

means that the distribution of the energy maxima is deter-

mined by the same function, E¢7), with the substitution X 8{J[ SE(u)]/gu} S[E— SE(u)]S{A
Nmax{E)=Nmin(—E). In the two-dimensional case the ex-
trema of the energy include saddle points, and, in order to — [ 5E(u)]/du?). (14)
carry out a complete classification of the extrema, we have to
introduce the maximum eigenvalue of the mai(@, The standard way of handling such integrals is to use the
exponential representation of tléfunctions
A =E,+VEZ+EL=A . 10 P P
We can identifyA _ and A, with inverse squared radii of 5[E—5E(u)]:f ? exp{ik,[E—SE(u)]},
ar

curvature of the potential wells along the principal axes of
curvature. The casd >0 corresponds to energy minima,
A, <0 to maxima, and\_<0, A, >0 to saddle points. 5( ‘7[5E(U)]} :j dk; exp{ ik ‘7[5E(U)]} 15
Since the sum in Ed.7) goes over regions with different au 2 2 au '
guenched disorder, for large enough rods and plates we can
make the replacemem,;,(E)—Nmin(E), where the bar de- FLOE(W)]| [ dks . P SE(U)]
notes averaging over the ensemble of different realizations of A- Ju’ = 25 & kg A= Ju2 :
the quenched charge distributions on the objéttts justifi-

cation for this replacement is given in the Appendix Substituting these expressions into Ety¥), we can perform
the Gaussian integration over the density distributhpn(x)
N ) — _ by shifting the variable of integrationSp,(X)— 6p,(X)
Nmin(E) = E—SE(U)]0[A _(u)]. 11
min(E) zr A (W16LA-(W)] a3 Sp3(x), wheresps is defined by
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=1/g which corresponds to the limit of validity of our model
Sp3 (X)= —igj dx'K(x=x"=u)dps(x")  (16)  (at such separations the charge distribution can no longer be
considered as continuousAt this point the number of po-
and tential energy minima."c approaches the total number of
charges on the infinite rod,’g.
K(X) =Ky V(X) +kodV(X)/ 9+ Kzd?V(x)[ %%, (17) In the case of screened Coulomb interaction between the

. . o charges, the potentid given by
Substituting Eq.(16) into the definition ofS 5p,], we ob-

serve that the produdp(x) Sp1(x’) in the integral over the e"‘Vm
coordinatex andx’ can be replaced by its average over the V()= ——, (24)
length of the rod. In the “thermodynamic” limithe length Jr?+h?

of the shorter rod. is much larger than the average spacing
between the charges on the rody)le can replace the latter Where x~* is the Debye screening lengtive set the con-
average by the quenched averdge stant coefficient in front of this expression to unityrhe
qualitative picture discussed in the preceding paragraph
8p1(X)Sp1(X')— 8p1(X)Sp1(X' ) =gS(x—x'), (18  remains valid in the rangey '<h<k ! A straight-
forward calculation shows that in the limit of strong

and arrive at the expression screening kh>1), m;~«"*h~5? exp(~2«h) and m,
. ~ k¥~ 72 exp(—2«h), and therefore~ («/h)2. The con-

N-—(E)= L deA AH J % clusion _that the conce_ntration of_ energy r_ninima at distances

min 0 =1 2 exceeding the screening length is larger in the screened than

in the unscreened Coulomb case, is quite unexpected. How-
ever, as will be shown in the following, the energy of these
potential wells is exponentially reduced by screening effects.
The functionP(A) which appears in Eq22), is the prob-
(19 ability of finding an energy minimum with a given stiffness
(inverse squared radius of curvaturke

9L
Xexp{iklE+ik3A— > > Dj,kjk,},
il

where the matriXD has the form

A A2
mg(h) 0 —my(h) - -~
D:( 00 my(h) o1 ) (20) P(A) g’Lmy(h) ex[{ 292Lm2(h)}' @9
—my(h) 0 my(h)

This function has a maximum a&,,,,=g[Lm,(h)]*2 and de-
The quantitiesn,(h) (n=0,1,2,...) are the second moments €YS to zero for both large and small radii of curvature. The

of the nth derivatives of the potential, function P(E|A) which also appears in E¢22) is the con-
ditional probability to find a minimum with enerdy, given
o = [gV(r)]? that its stiffness is\,
mo(h)zzf dr V3(r), ml(h)zzf d o |
0 0

(21) 1 [E— SEmin(A)]?
z P e -

Here, the average energy of a well with a given stiffnégs

(26)

oo

mz(h)zzj dr

0

FV(r)
ar?

Performing the Gaussian integration over variatdgn

Eq. (19), we obtain SEin(A)=— () A<0, (27)
m,(h)
Nimin(E) = '—’Cgfo dA P(A)P(E[A). (220 and we conclude that the depth of an energy well increases

on the average with its stiffness. Althougk ,i,(A) is nega-
Herec is the average concentration of potential wgilsm-  tive definite as expected, there is a nonvanishing probability
ber of potential minima per unit length of the rod of length to find a potential well with energy higher than the average
L’) for parallel rods separated by a distarce energy, i.e.,0E>0. This probability decreases rapidly with
the stiffnessA. The squared deviation of the energy from the
1 m2(h))1’2 average value
my(h))

T 2w

(23

o=g?LImg(h)—mZ(h)/my(h)] (28)
Note that the average distance between potential wells is
given by 1£. For unscreened Coulomb interaction betweendoes not depend on the well stiffness For the unscreened
the rods, one can show that;~1/h3 and m,~1/h®% and  Coulomb casegz=g/L/h, and the spread of the energies
thusc~ 1/ (i.e., the distance between the energy minima isof the minima increases as Y2 when the rods approach
of orderh). We conclude that the density of energy minimaeach other. In the presence of screening this result is un-
increases with decreasing separation between the rods, antdanged for distances smaller than the screening length. At
approaches the number density of chargest a distancé larger distancesyg decreases exponentially, as expt).



56 INTERACTION BETWEEN RANDOMLY CHARGED RO . .. 7057

Averaging Eq.(27) over A with the distribution function -T
(25), we obtain the average well depth min

— gmy(h) [ =L \¥2
OEmn="~ "7 (mz(h))

(29

Repeating the same steps for the energy maxima we obtain
the average height of energy maximig na=— Emin.

Note thatdE,,,<yL, and since for sufficiently large sys-
tems the energy of attraction can easily exceed the thermal
energykg T, the frozen randomness of the charge distribution
on microscopic scales may result in “pinning,” i.e., the sys-
tem will be trapped in one of the typical energy minima.
Such effects can be observed by keeping the rods at a fixed
distance and monitoring their stick-slip response to exter-
nally applied tangential forces. In order to understand the 4
nature of this response, we need to obtain additional infor- _jq 5 i) 5 10
mation about the energy landscape generated by a relative SE
translation of the parallel rods. This will be done in the fol-

lowing. : ;
9 length, Nin(E)/L’, as a function of the energyE, for different

Scrli\é?:;“r&%;?gﬂ:rgtegg?ésmlgllzqv%? I]l?nt(;]etﬁgtsetl,?é afrl:#:t;onvertical separations between the rods. The broken line corresponds
N—(E) can be Writtenpin a uni,versal form: to h=L, and the solid line thh=0.1L (the density of chargeg is
min .

unity).

FIG. 3. Plot of the number of minima per unit energy per unit

Nyir(E)= L’ Pon E E) 1/2} minimum and the position of the neighboring maximum. To
min gJhL Mg L) estimate this value we introduce the numbet |w) of wells
per unit length with a given stiffnes§>0 and separated by
where the distancenv from a maximum with an arbitrary stiffness
) A’ <0. Repeating the steps which led to the derivation of Eq.
DY) = ‘/22 exp{ y ) (14), we find the following expression for this conditional

2 probability:

c(Alw)
—-y|, (30 |

2
y ) y
X |5 ex +v erf
‘( 257 Y (5@)

where erf is the error function. Expressions of these types are
familiar from theories of stochastic processegy., Gaussian ) )
random currents For example, there is an analogy between X 8{d[SE(u)]/du}{A — a9 SE(u)]/u}

the current intensity as a function of time and the random y a2 2
interaction energy as a function of relative displacement of X S{ILSB(utw) 1/ up S{A" = I SB(u+ W)}/ ou}.

0 1
=f dA’AlA’|Nf D[ 8p,]e Sorel

the rods. The expression for the probability density function (31
of maxima of the intensity of random noise curref@$ re-
sembles Eq(30). The functional integral ovefp,(x) can be calculated as be-

In Fig. 3 we plot the number of energy wells per unit fore, with the result
energy and unit lengthN,;/L', as a function ofSE, for o B B
several values of./h (for the unscreened Coulomb case c(Alw)=g~*L 2[1_775(W)] V41— ph(w)] Y2
Although the distribution is always peaked at a negative

value of E [see EQ.(29)], there is a finite probability of 2— f dA’A|A’]
observing a potential well with a positive value &E. This (27m)"mym,
reflects the possibility of having local energy minima located 2 N2 ,
inside broad energy maxim@ee Fig. 2. Note that the dis- Xexp{ A +(2A ) 2772(2W)AA } (32)
tribution broadens and shifts to more negative values with a 2g°Lmy[1-n5(w)]
closer approach between the rods. )
where we defined
B. Width of the energy minima 1 (e V() aV(r+w)
The width of a potential well cannot be directly estimated (W)= — fﬁxdf Fr—

from a knowledge of local characteristics of its minimum, (33
and one has to consider the shape of the energy profile be- . 2 5
tween two neighboring energy extrema. We define the width 7o(W)= i f dr J V(Zr) J V(r:w) )
of the well w as the distance between the position of the my J-w or or
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Performing the integration over the stiffness of the maxima~h¥?A'%, i.e., the width of the minimum is a weakly in-
A', in Eqg. (32), and recalling the expressions for the con-creasing function of its stiffness.

centration of minimac, Eq. (23), and for the distribution The average width of an energy well is defined as
function of the stiffness of energy minim&, Eq. (25), we 1o
obtain my(h)

(38

- W(Amax):[ms(h)
c(Alw)=c*P(A)q(Alw), _ o
As expected, this average width is of the same order as the

where average distance between the typical minima} [see Eq.
5 " ) (23)], i.e., thecharacteristic minima form a densely packed
[ 1= 7m5(w) A random lattice At distances smaller than the screening
A(AIw)= 1— 73(w) Cg2Lmy[ 7, A(w)— 1]/’ length the average spacing of this lattice is of the order of the

(34 spacing between the rods and at larger distances it is
(h/x)*2. Since both the curvature and the width of shallow
In order to obtain some intuition about the dependence ognergy wells are small, and since the probability to observe
this function onw, we consider two limiting cases. In the uncharacteristically deep wells is exponentially small, the re-
limit w— we obtaing(A|w—o)=1. The presence of the sulting energy landscape does not have a fractal character
prefactorc? in the above expression far(A|w) [the first (i.e., it is smooth.
line in Eq. (34)] expresses the fact that the correlation be- As a byproduct of the above calculation we can obtain
tween minima and maxima disappears in this limit and themore detailed information about the distribution of extrema
joint probability of observing a minimum and a maximum is in our problem. The integrand in E€31) gives the probabil-
given by the product of the concentratio®(A)AA of en- ity to find two extrema with given inverse radii of curvature
ergy minima with givenA and of the concentration of A andA’, separated distanee from each other. Integrating
maximac [which is the same as the concentration of minima,this function over positive\ andA’, we find the correlation
Eq.(23)]. In the limit of smallw we can expand the integrals function of concentration of energy wells
in Eq. (33) in powers ofw, and obtain
2¢31- n3(w) %

[— 2 1/2 c(r)c(r+w)= , 39
q(Alw)= L p(—%) w<<%) , e [1+ (W)L = 7(w)]™ >
weg°Lms ms
(35)  which behaves a&? on small distancew. The correlation
between minima is lost on distances of order of the average
where spacing between the characteristic energy wells.

» [PV C. Dependence of the well h
m352 dr (9r3 . (36) . Dependence of the well parameters o
0 We now consider what happens with a given energy mini-

Inspection of Eq(35) shows that the probability of observing mum when we change the distankebetween pla.tes by a
an energy minimum and an energy maximum separated by%{nall valuesh. There are two types of changes: the mini-

distancew tends rapidly to zero whew—0. This confirms ~mum is displaced by the vectafu=(du/oh)dh, and its
the intuitive expectation that a maximum and a minimumdepth and curvature change. Differentiating the equation for

cannot coincide. For fixed this probability decreases rap- the extremag[ 5E(u)]/du=0, with respect td, and taking
idly with the stiffness of the minimum.. The reason for this into account both thg implicit and the explicit dependence of
is that stiffer potential wells are characteristically deeper tharin€ €nergy orh, we find

shallow ones and, as expected, the concentration of shallow 2
’ ' E h
minima is much larger than that of deémnd stif) ones. a_uz - M
The average widthv(A) of a well with curvatureA can dh JLSE(U)]/u
be estimate_d from th_e conditior_1 that the p_robability o [ SE(U)]
g(A|w,) to find the maximum at a distangefrom this well BN where 0= —uah (40

is about one-halfat distances much smaller than this width
the probability goes to zero, and at much larger distances
goes to unity. For wells with curvature smaller than the
typical one[which corresponds to the maximum of the dis
tribution P(A), Eq. (25)], Amax=9(Lmy)Y? we can use the

asymptotic expressio(85) and obtain

the derivativedu/dh varies from one well to another, and
according to Eq(40), its distribution for energy minima with
" a given stiffnessA is determined by the distribution of the
random variablé®. The distribution function of this quantity
is defined by the same expression as the energy distribution
function, Eq. (14), in which we substitute 5{®
_ — 9?[ SE(u)]/audh} instead ofs[ E— SE(u)]. We shall not
W(A) . (37 X ! S oo
gvLmg repeat the mathematical details of the derivation, which is
analogous to the derivation of EQ6) for the conditional
In the opposite limit,A> A ., the average width of the distribution function of energye. The final result for the
minima is determined from the equatiom,[w(A)] conditional distribution function of for wells with given
=Ama/A. In the unscreened Coulomb case(A) stiffnessA is
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2

1 eters of the energy minima but only in the averages of these
P(®|A)= W exp — %2—

. (41 parameters over the frozen charge distributions, we can re-

® place the microscopic charge distribution by one that is
whereo? is defined by coarse grained over a length scaldthe distance between
© the rod3. Each such electrostatic “blob” containgh
» = [32V(r)]? 1 amy(h)]? charges of both signs, and thus the total charge per blob is of
0p=49d L{ ZL dr ohar 4my(h) oh } orderQp= = (gh)*“ Since there ark/h such blobs, and the

42) average interaction energy between the rods vanishes

suming that there is no net charge on the jodE can

Turning back to Eq(40), we conclude that the distribution Written as the sum of interaction energiesd.éh neighboring
function of the variation of well displacement with the dis- blobs on the two rods. Each one of the contributions is a

tance between the rods for minima with a given stifinéss  random function which takes the valuesQj/h, and there-
Gaussian, with zero average and the second moment fore the total interaction energy is also a random quantity

with zero average and characteristic deviation

12 12 1/2

se=(r] Fogf]
h h '

Ju\?
oh

&

=—. (43
A A*

o (46)

We conclude that whereas soft potential minima undergo

arbitrarily large random displacements from their initial po-in agreement with the exact result, 89).

sitions under small variations of the distarttdetween the The above scaling picture can be used to answer the fol-

rods, the positions of stiffand deep minima change very lowing question: let us assume that the system “sits” in one

slightly (as evident from Fig. 2 If one considers the dis- of the characteristic minima with energ ., given by Eq.

placement of the most probable minima, one finds tha{29). How many charges on the shorter rod must change their

(dulah)? is of order unity, and therefore this displacement ispositions for this minimum to disappear? This numbecan

of the same order as the change of the spacing between the estimated as follows. The interaction energy can be in-

rods, sh. creased by changing the charge distribution in a way that
The same procedure can be used to find the change of thiecreases the attraction or increases the repulsion between

well stiffness SA =(dA/dh)sh. Proceeding analogously to each of the two neighboring blobs on different chains. The

the derivation of expressiof27), we obtain change of the interaction energy associated with this redis-
- tribution of chargestQu/h should then be equated to
% :é M (44) |5Emin|- This gives
ohf, 2 oh -~
r=\gL<gL, (47)

In order to obtain the dependence of the stiffness of the av-
erage potential well on the distanbebetween rods, we in-

tegrate this equation and obtain i.e., the number of charges that should be rearranged for the
o o minimum to disappear is of the order of the square root of
A(h)=A(hg)[ my(h)/my(hg) ]2 (45)  the total number of charges on the shorter (add does not

depend on the distance between the yodlkis estimate may
In the unscreened Coulomb case the stiffness of an averadpe relevant to biological systems in which the effective in-
minimum is a strongly decreasing function of the distanceteraction between the objects can be controlled by biochemi-
between the rods\(h) ~h~>2 Equation(45) shows that the ~cal meande.g., by protonation, phosphorylation, €fe]).
distribution P(A) of the radii of curvature of the energy
minima, Eq.(25), is invariant with respect to the change of
the distance between rods. Thus, when the two rods approach
each other, existing minima do not disappear and become A. General analysis
progressively stiffer and deeper. At the same time, new shal- |, the case of two parallel plates we can transform the

low minima appear, and grow in depth lags reduced. Itis g m over the positions of energy extrema in Ed) into an
interesting to note that while the former behavideepening integral over the continuous variahle

of existing energy minimawould be observed even if the

IV. PARALLEL PLATES

charges on the two rods were placed on periodic lattices, the

appearance of new minima upon closer approach is a char- %}t :f du &{d[ SE(u)]/du}def E,p(u)] -
acteristic signature of the randomness of the two charge dis-

tributions.

=f du S{d[ SE(u))/outA _(u)A ,(u)..., (48
D. Scaling estimate

The above observations allow us to introduce a scalingvhere the matrixE,,; is defined in Eq(8). The minimalA _
estimate which takes a particularly simple form in the case ofind the maximal\ , eigenvalues of this matrix were defined
unscreened Coulomb interaction between the rods. If we ar@ Egs. (9) and (10). Analogously to the one-dimensional
not interested in the details of the distributions of the paramcase, Eq(13), we use the equality
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A7<u)A+<u>a[A,<u>]:J:dA,F dALAA, W(EE, E_,Ey)

xa[A_—AA_w)] f fzw)z quJ

XA —A (W], (49

gA

xexp[ikEJriz q;E; -
Substituting Eqs(49) and (48) into Eq. (11), and changing !

the order of averaging ovebfp, and integration ovemu X[pzm'(h)+k2m’(h)+(2q2 +q2,+q2 Jmach)
(which gives the areA’ of the infinite plat¢, we obtain the ! 0 + xy) T2

following representation for the energy distribution function ,
arep o —2kq+ml<h>]}, (54
Nmin(E):A/J'0 dA,JAidA+A,A+ where the integralsn(h) are defined by expressions
L » X o aV(r)]?
xj f f dE,dE_dE,,¥(E,E, ,E_ ,E,) mo(h)=2wfo dr rva(r), ml(h)=7Tf0 drrl——/ .
(55)
XS8(A_—E,+\E2+E2
( + xy) aZV(r) 19V(r))?
XA, ~E, —JEZFEZ). (50) ma(h)= f drrl—=——7 7 | -
Later we will show that the function The above moments can be evaluated explicitly in the case

of screened Coulomb interaction between the plates. We find

V(EELE-Ey) mg(h)=2m Ei(2«h),

[JE(u)]
N D[ dp,le” Siﬁpzl(s{T] m;(h)=m«? e 2" —2—(12 Zh)h) Ei(2«h)|,
(56)
x S[E—SEWILT aE;—Ej(w)] o2k
J my(h)=7x* EI(2Kh)+8( s

=V(E,A_,AY) (51
X(3+6Kh+2K2h2—4K3h3) ,

depends orfc. andE,, only through their combination4 _
andA ., Egs.(9) and(10), and therefore, it can be moved _ o _
outside the integrals ovéf.. andE,, in Eq. (50). Perform- where Ei denotes the exponential integral function.

ing these integrations, we recast E§0) in the form As can be directly checked from E4), the function¥
depends on valueg, andE? + Eiy and, therefore, or _

wA’ and A . only. Performing the Gaussian integrations in Eqg.
Nimin J dA - f dA A A, (54) and substituting the resulting functigh(E,A _ ,A ;) in

Eq. (52), we finally find

XA —=A)V(E,A_,AL). (52 . .
N E1-AT] “aA_ [ “aA PIAAPEIA +A),
We use the following exponential representation of éhe 0 0
functions in Eq.(51): (57)
dk The average(surfacg@ concentration of potential wells is
5[E—5E(u)]=f 5 eXBK[E— SE(W]}, given by
®3 1 myh) .
c=——F———.
5 d[SE(u)] :f dp ip. [ 6E(u)] 2mv3 my(h)
(2m)? P |

For the unscreened Coulomb case this yieddsh~2, and
the number of energy minima is of ord@f/h?. At distances
5[EJ-—E»(u)]=j % explia;[E;— E;(u)T}. exceeding_ the screenin_g length we O'bﬁﬁK/h. In' Fig. 4
2 we plot this concentration as a function of the distance be-
tween the plates, for several values of the screening length
Substituting these expressions into E§l), performing the  « 1.
Gaussian integration over the density distributiém,(x), The functionP(A_,A ) is the normalized probability
and using the two-dimensional analog of EtB), we obtain  distribution to find a potential well with two principal inverse
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FIG. 4. Plot of the concentration of energy minimas a func-
tion of the vertical separation between the platesin arbitrary
units of length. The solid line corresponds to=1, and the broken
line to «=10.

squared radii of curvaturd _ andA . >0 (here we write out
this function in a symmetrized form with respectAa and
A+)1

o _(319AA4A+—A
PAADZT) iggamm

3A%2+3A2—2A_A,
xXexg — (59

16g7Am;(h)

This function is peaked about , =3g[Amj(h)]¥? and A _

=1.349[ Am,(h)]¥2(i.e., the most probable energy wells are

asymmetri¢ and vanishes for large and smadll. . In Eq.
(22), P(E|A_+A ) is the conditional probability to find the
energy minimum with energ¥ if its inverse squared prin-
cipal radii of curvature aré\ _ and A . [it depends only on
the mean stiffness,A_ +A ;)/2]:

—[E-SE(A_+A,)T?
20% ’
(60)

1
P(EIA_+A )= 2moD) " exp{

where the average energy of a well with the given and
Ayis

mi(h) A_+A,

E(A,+A+)=—m 2

<0, (61)
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FIG. 5. Plot of the average energy of the mining&,y;, (in units
of gAY?), as a function of the separation between the platéim
arbitrary units of length, for different values of the inverse screen-
ing length«: 1 (solid ling), 0.2 (circles, and 5(crosses

OEmin=—84g mi(h) (63

A 1/2
st
As in the two-rod case, the average height of energy maxima
is simply SE o= — Emin- Symmetry considerations imply
that the average value of the energy corresponding to saddle
points is zero. o

In the unscreened Coulomb case, E6Q) gives SE i,
=gA'?, independent of the distance between the plates. As
expected, the average depth of the energy minima decays
exponentially with the separation between the plates at dis-
tances exceeding the screening len@fig. 5. Finally, we
would like to stress that, contrary to the usual consideration
of electrostatic interactions between two charged plates,
where the presence of electrical double layers must be taken
into account 8], such effects are unimportant for randomly
charged plates, where the total charge in any finite region of
the plates vanishes on the average, and condensation of free
counterions on the plates is not expected to play an important
role.

B. Stick slip

Up to this point we considered the case of two randomly
and irreversibly charged objects, and assumed for simplicity
that the total charge on each object vanishes. A different

and the standard squared deviation of energy from this avesituation which may, in principle, be realized in experiments

age
oZ2=g?Almgy(h)—m;Z(h)/(2mj(h))]. (62)

For unscreened Coulomb interaction between the platgs,

utilizing the surface force apparatQghen the device oper-
ates in the shear mod@]), is when the two parallel interact-
ing surfaces are randomly charged, with average charge den-
sity p. In this case there will be average electrostatic
repulsion between the plates, and one has to apply a normal

=g?A In(A’/h?). This logarithmic divergence disappears in force in order to maintain the separation between them.

the case of a finite screening lengii . In the limit h

What happens if we attach a spring to one of the plates

<k '<(A")Y? the above logarithm is replaced by (say plate 2, with areA’) and move the other platglate 1,
21In(1l/kh). For rod separations exceeding the screeningvith areaA) by a distances parallel to it? If the distribution

length, o decreases exponentially witth.
Averaging Eq.(61) over A . with the distribution func-
tion (59), we obtain the average well depth

of charge on the plates is uniform, there will be no restoring
forces associated with this displacement, and plate 2 will not
move. We now assume that the charge distributions on the
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Y . u be observed. Note that each time the critical spring force is
— exceeded, plate 2 recoils to a new position which corre-
rm———"F—» sponds to one of the typical energy minima and, since, in
h ‘ general, there are many such minima, a statistical spread of
equilibrium positions of the lower plate will result.
| Note that the value of the critical force depends only on
the properties of the energy landscape of the interacting
plates, and not on experimental details such as the spring
constant, etc. Our estimate of the critical force defines the
minimal force that has to be applied in order to initiate rela-
tive motion of the two plates. This force is analogous to
static friction between two solids in contact.

FIG. 6. Schematic drawing of a stick-slip type experiment. The
two plates are separated by a distahc@and undergo parallel trans-
lation by a distance.

two plates are randomly froze@and uncorrelatedand pro-
ceed to analyze the response of plate 2 to the displacement of
plate 1(see Fig. 6.

As we have showed in Sec. IV A, the presence of frozen yp, ¢ this point we assumed that the random distributions
random charge distributions on the plates leads to the appeast frozen charges on the plates are uncorrelated. We now
ance of a large number of energy minima which correspondonsider a different class of problems, i.e., the case of strong
to different relative parallel displacements of the plateS ., rejation between the charge distributions on the plates. In
Since, for macroscopic plates, the typical energy associateghticular, we will consider a situation which has an impor-
yvith these minima scales @82, for sufficiently large plates tant analog in biology, namely, that of two plates which
it can be much larger that the thermal enefgy and the \yoyd stick to each other when brought into contact in a

plates will “get stuck” in one of the minimal energy con- particular relative orientatiorithe random version of the
figurations. The electrostatic repulsion between the plates;ock and key” principle).

scales a# and, therefore, the normal force needed to keep  conpsider two identical circular discs of ar@asuch that
the plates at a fixed separation from each other will be domitne charge distribution on one disc is the mirror image of that
nated by the average repulsion, and will not be significantlys, the other onéthe charge distributions are identical except
affected by the relative displacement. that each positive charge on one disc is replaced by a nega-
The presence of these minima will lead to the appearancge one on the other, and vice veysahis charge distribu-
of macroscopic restoring forces for relative displacement of;o, is random and frozen and we assume that the total
the plates/10]. We showed earlier that the depth of an en-charge on each of the discs vanishes. This system has a well-
ergy minimum has a typical valuéE,, [Eq. (63)]. Since  defined minimal energy configuration at contact, namely,
such energy wells are densely distributed with respect to thghat of exact overlap of the two mirrored charge distribu-
relative displacement of the plates, the system will occupyions. We now proceed to calculate the energy landscape for
one of these characteristic minima. Plate 2 will move to-two such parallel discs of radil® separated by a horizontal
gether with plate Istick phasguntil the force on it exceeds gistanceu and a vertical distande and rotated by an angle

some critical valuef; at which point it will recoil back ith respect to the direction which corresponds to exact
(slip). This value can be estimated from the characteristics ogverlap of the two charge distributions.

V. CORRELATED DENSITY PATTERNS
AND RECOGNITION AT A DISTANCE

the typical energy well: Under the conditions of the model, the number density of
" charges on disc 1p4(X,y), is a random quantity with
JE(u)\? , quenched average
forie= (T) } =gvAm(h), _ , ,
p1(X,Y)p1(X",y")=g6(x—x")6(y—y’), (64)

wherem; (h) is defined in Eq(56). For unscreened Coulomb andp; is related to it by translation and rotation,

interactions this yields the simple relatidg,=gAY%h. In _ - e

the presence of screening this force decays exponentiaIIyPZ(X’y)_pl(ux+x Cospy sing,Uy—x singy cos‘p(é,a

with separation between the plates, and stick slip is expected

only at separationfi<x~* (and can be suppressed by the whereu, andu, are the components of the relative displace-

addition of saly. ment of the two disks in the plane parallel to the discs. Since
When the critical force is exceeded, plate 2 will recoil the charge distributions on the two plates are correlated, the

back to a position in which the spring force becomes suffi-quenched average of the energy¢,h,u) [defined in Eqg.

ciently small. The process will repeat itself as long as we(1)] does not vanish. For the unscreened Coulomb case it is

continue to drag plate 1, and stick-slip motion of plate 2 will given by

_ 27 R rdr
E(e,h,u)=— j daf .
(e.hW)="g 0 0 Jul+h?+4r? sir(e/2)+4ru sin(¢/2)sind

(66)
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0] FIG. 8. Schematic picture of the relative orientation of the mir-

o ror imaged charge distributions on the two discs. One of the discs
FIG. 7. Plot of the average interaction ener§fp,h,u) as a  (shadedl is fixed at the origin, and the relative orientation of the
function of the anglep (in deg which describes the deviation of the other disc, corresponding to the minimal energy configuration for
mirror imaged charge distributions on the two discs from perfectdifferent displacements, is shown. The orientations of the minima
alignment. The distance between the disc$1#s0.6R, and their are ¢* =0 in the region to the left of the dotted curve agd
relative displacement is=0 (lower curve and 1.R (upper curve =1 to the right of the dashed curve. The region between the two
curves corresponds to<Op* <.
In Fig. 7 we plot the dependence of the interaction energy ) ) )
E(oihu) 8 a incton of the angle for -0 andu LRI P e0E e Sepelonn L e e
=0 and 1.R. Note that the minimum at=0 (u=0), o —LRe =7 P
which corresponds to perfect alignment of the charge distrié‘ihtgffrlc')nne] lijn;irﬁ)t].a::?s(’e\évcg?tiégr dipslfl;ﬁZeatF;]per?Zf;iveeaCh
butions, is much deeper than that at fintgu=1.4R). The anglee* corresponding to the energy minimum rotates from
angular width of this minimum(at ¢=0) decreases with 2aN9'€¥ E hg d gy mir dthe mni
separation, and becomes vanishingly small in the limit” [0 Zero(see the schematic drawing, Fig. énd the mini-
h/R—0. Thus, although the depth of the minimum increased"UM Pecomes progressively deeper. The physical reason for

when the two disks approach each other, a random search Hfis angular dependgnqe OT the energy becomes qlear if we
the “correct” (i.e., minimal energy configuration becomes replape the charge dI.StI’IbUtIOH on each plate t.)y a dipole, and
increasingly hard consider the interaction between two such dipoles. Accord-

Although the above integrals cannot be calculated analyti"d {0 our mirror image construction, when the two discs are
cally, several comments can be made about the angular dgl_aced above each .other, the.mmlr.nal energy conflguratlon
pendence of the minima for different separations between th%orresponds t@=0,r:.e.,hthe|:qr|egtatr|10ns of the tWr? c:lpoles
discs. For relative displacements:v2h, the energy reaches are opposite to each ot Gn_ 'g. 8, the arrow on the lower
its absolute minimum ovep at ¢ =0, which corresponds to disc gives the direction of its dipole moment; the arrow on

perfect orientation of the two disKghe two distributions can the upper _d|sc points opposite to its dipole mometthen
be brought into coincidence by pure translation, without ro-they are displaced horizontally far enough from each other,

tation). When the ratiai/v2h becomes larger than unity, the ;[jhe rlnmlmgl tenlergytﬁonflgurat(qun btgcomes O‘Phe n wh|chtthe
minimum is attained at a finite angle ¢*, which increases ipoles point along the same directiop ). The range a

with this ratio. An analytical expression for this angle can beWhICh the minimum occurs at a finite value pftorresponds

obtained wheru/v2h is only slightly larger than unity. In to relative positions of the discs in which the multipolar con-
this regime, tributions to the interactions between the two frozen charge

distributions dominate over the dipolar ones. This range be-

9\¥2h [ y 172 comes narrower with increasing vertical separation and, at

o* —2( ) R (m— 1) (67) sufficiently large separations, a nearly discontinuous transi-
tion from ¢=m to ¢=0 is expected to take place when

Note that this angle is proportional ldR, and tends to zero u—v2h. ) ) )
when the vertical distance between the discs becomes much UP o this point we considered only the quenched average

7

smaller than its radiugstrong overlap regime of_ the_ interactio_n energy between the di(s‘ds)h_erent” con-
Another analytical result can be obtained in the limit triPution). In principle, we should also consider the mean
>h andh<R. In this case we obtain square deviation from this averags&? (“incoherent” con-
tribution). It can be shown that such incoherent contributions
._|2arcsitu/R) when usR are of the same order as the coherent ones for disc separa-
¢ = T when u>R, (68) tions much larger than their diameter. However, the interac-

tion between the discs becomes strong only when the sepa-

i.e., the anglep* varies continuously from zero t& when  ration between them is significantly smaller than their
the centers of the two nearly overlapping discs separate by @imension R). In this range the ratio of the coherent to the
horizontal distance corresponding to their radius. incoherent contributions is of ord&/vh?+u?, and the in-

Numerical investigation shows that a similar phenomenorcoherent contribution is negligible. At such separations the
takes place when increases at any fixed vertical separationminimal energy configuration always corresponds to nearly
h: whenu exceeds/2h, the anglep* becomes finite, and perfect alignment of the charge distributions on the two
increases tar at some value ofi determined by the relative discs,¢=0.
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In the above analysis we assumed perfect correlation be- VI. DISCUSSION
tween the frozen charge distributions on the two plates. If the

charges on the two discs are only partially correlated, th(%ranslation of two random frozen charge distributions inter-

attractive interaction will be reduced by a facterpropor- . : .
. . ._acting through long range electrostatic forces. Two simple
tional to the fraction of the correlated charges, and the inco- . ! . -

eometries were considered, for which the statistical proper-

herent contribution to the energy will remain unchanged. The® ; .
. . o . ies of this energy landscape can be calculated analytically,
ratio of coherent to incoherent contributions will be reduced S .
namely, two parallel rigid rods and two parallel rigid plates.

by a factora, and therefore a strong energy minimum €O \we first examined the case of completely uncorrelated

sponding to alignment of the coherent charge distributions harge distributions on the two objects. We found that when

will now appear only when the@scs approach separations Yhe total charge on each of the objects vanishes and the Cou-
orderaR. Thus perfect recognition of the correlated parts of : X . .
lomb interaction between them is unscreeried., when

the charge distributions on the two discs will still take place . - . : .
. there is no characteristic length scale associated with the in-
when they are brought into contact. . . . ; :
: ST : teraction potentia) the interaction between the objects be-
The discussion in this section may appear to be based o0 L .
e . . comes significant and energy minima appear when the sepa-
a somewhat artificial model, since the preparation of such_.. ; :
: ) oo ration between these objects becomes of the order of their
mirror imaged randomly frozen charge distribution may pose,. . : : . :
: e . dimensiongwhen the two objects are of different sizes, this
formidable difficulties. Note, however, that since the theory A .
happens when the separation is of the order of the linear

makes no assumptions about the dimensions of the charge ; o
: - “dimensions of the larger of the tiwdWVhen the separation is
objects, one can construct such a system by assembling. a
. - further decreased, these energy wells deepen, and new wells
random array of negative and positive electrodes and then

constructing its mirror image. Another example to which theappear. We calculated the distributions of energy minima,
g ge. P the depth and the width of the characteristic energy wells,

general methodology described in this sec;tion can be appliegnd the spacing between them, and showed that both the
is that of an array of parallel magnets with their north a”dwidth and the spacings are of the order of the separation
south poles randomly alternating along the normal o thg)enyeen the objects. This indicates that the typical energy
array. A “mirror image” of this random array can be pre- \yg|is are densely packed in the space generated by the rela-
pared in a thin ferromagnetic film which consists of disor-tjye translation of the objects.
dered magnetic domair{gith directions pointing randomly ~ The above considerations apply to separations down to
in and out of the surface of the fibmif this film is brought the average distance between the Cha(g%g_l for rods
near the Curie temperature and placed in contact with thend h=g 2 for plates, respectively at which point our
random magnetic array. A mirror image of the array will assumption of continuous charge distributions on the objects
form in the film, and can subsequently be frozen by decreassreaks down. Strictly speaking, there is also an upper cutoff
ing the temperature. The resulting magnetic interactions besn the distance between the objects; as shown in the Appen-
tween the film and the array will vary with their separation dix for the two-rod case, the method of averaging over fro-
and relative orientation in a manner closely resembling ouzen disorder used in this work becomes inaccurate for sepa-
electrostatic model. rations which exceed the linear dimension of the longer rod,
Finally, one can try to speculate on the relevance of ouh=L". Although, at larger separations, intermittency effects
model to recognition in biological systems. Although manynot considered in this work may become important, such
different types of attractive and repulsive interactiéakec-  corrections are of limited physical interest since in this limit
trostatic, hydrophobic, hydrogen bonding, van der Waalsthe average number of energy minima is of order unity and
etc) are present in these systefdd], the resulting potential their depth tends to zero. A more restrictive condition fol-
energy surfaces can be modeled by introducing ran@m lows from the fact that we did not explicitly introduce the
partially correlatedl distributions of effective charges. The constraint of fixed total charge on each of the rgde as-
justification for this statement is that the random combinassumed that it is fixed and, consequently, did not average over
tion of attractive and repulsive long range forces in ourthe distribution of total charge on the rgd#t can be shown
theory can give rise to effective interaction potentials of ar-that accounting for the fixed total charge constraint leads to
bitrary complexity and, therefore, the theory can serve as aorrections of orden/L (L is the length of the shorter rptb
generic model of interactions between biological systems irour results. These corrections produce a constant shift of the
which perfect “lock-and-key” arrangement of the two ob- energy, and do not depend on the relative displacement of
jects at contact is preceded by prealignment at a distancéhe objectsu.
when the separation of the approaching objects becomes of We found that although much deeper energy minima than
the order of their dimension®r on the order of the Debye the typical ones may also exist, the probability of encounter-
screening length, in the presence of salhis prealignment ing them is exponentially small and they may or may not be
can provide a mechanism by which metastable “traps” atobserved in finite size systems, depending on the strategy by
contact can be avoided by sensing the energy landscape which the energy landscape is investigated. If two objects
distances where the energy barriers are small enough to approach each other in an adiabatic and unconstrained fash-
low the system to find the true energy minimufior ex-  ion, due to temperature fluctuations or other sources of ran-
ample, when the depth of the coherent minimum is largedom noise, they will be captured by the lowest minim@m
thankgT and the depths of the incoherent ones are smalleis the first minimum to appear when the separation between
thankgT, at separations of the order of the size of the ob-them is of the order of their sizewhose depth increases and
jects. whose position becomes pinned dovat some relative dis-

We studied the energy landscape generated by relative
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placemenu) upon further approach. When the experiment isanalyzed in detail the case of screened Coulomb interactions
repeated, the relative position of the two objects at contadbetween the rod&and between the platgshe generalization

will be faithfully reproduced. A different scenario takes to other types of interaction potentials is straightforwéwe
place if the relative displacement of the randomly chargednly need to know the second moments of the potential and
objects is varied with some finite precision by externallyOf its derivative$. The combination of long range attractive
applied forces(allowing for small fluctuations of this dis- and repulsive forces can be used to generate interaction en-
placement In this case, the system will jump between the €rgy landscapes of nearly arbitrary shape, and can serve as a
most probable energy minima and will not be able to find thed€neric model for despnbmg more complicated situations in
lowest one. Since the number of these minima at contact i¥hich many types of interaction®.g., electrostatic, hydro-
proportional to the number of charges on the objects, th@hOb'C' van der Waals, ejcact s_|multan§ous_ly. The main
relative positions at contact will not be reproduced when thédeas of thls_wor_k can be applied to S|tuat|on_s fr_equ_ently
experiment is repeated. The conclusion, that a random Sear%?countered in biological systems, where the distribution of

of the ground state of interacting random objects is mord"€ effectt;ve “chargr;]es” IS fflxed b); ctr)1em|spry, .SUCh as mtert;
efficient than any deterministically driven one, may have in-actions between the surfaces of bacteria, interactions Dbe-

tween folded proteingin the latter case, temperature effects
}_éyhich were not considered here, have to be taken into ac-

scope of this work, and requires a thorough study of thecour.")’ and other. One may object that our assum“ption f,)f
corresponding kinetics. continuous charge distributions does not apply to “small

In the preceding paragraph we discussed the applicatio stems such as prqteins which contain, at most, seve_ral hun-
of our model to studies of “recognition” for two uncorre- reds of amino acids. However, from the perspective of

lated objects, in which one looks for anpriori unknown duantum chemistry, each amino acid is a “large” molecule

spatial arrangement that optimizes the overlap between thihich is characterized by a complicated potential energy sur-
two frozen charge distributions. We also studied a differenlfacfa' Futhermore, the potential .f|e|d in the vicinity of an

limit of this problem, namely, that of perfectly correlated amino acid erends on t_he details of the Ioca}l environment
charge distributiongmirror image$, for which the optimal in r\?./h'cﬁ th|§ molecule 'Z Iocatec(ij, €.g., on Its nelghfbor:s
overlap configuration at contact is known and one would likegV'thin the prrgm?:m, seco\r;vr?ry, an tgmar)r/]_strucullre_ 0 the
understand how this configuration is attained when the twrotein, on the PH, etc. When viewed at this resolution, the
objects approach each other. We found that the presence 89tent|al field which exists in the vicinity of a large protein

long range forces leads to remote “sensing” of correlations M&Y be not too different from that generated by a randomly

and raises the possibility of prealignment into the grounoﬂozen charge distribution of the type considered in this

state configuration before contact. The characteristic separ?ﬁork' We cannot, of course, be certain at present that nature

tion at which the objects begin to sense the optimal relativ&!tilizeés such long range interactiorigeir range is deter-

orientation is comparable to their linear dimension. If theMined by the screening lengtfor recognition by prealign-

correlation between the charge distributions becomes impelment' yet the pos§|b|l|ty that this is the case gives some hope
fect due to the presence of defects, the sensing distance at future extensions of the present model may have impor-

reduced and, since the depth of the incoherent minima intant implications for biology.

creases with decreasing separation between the objects, the

system may fall into one of these “false” minima, and align- ACKNOWLEDGMENTS

ment between the correlated portions of the objects will be

prevented. When the concentration of defects is further in- This work was motivated by discussions with Manfred

creased, the ground state configuration will no longer be deWilhelm, who suggested that stick-slip motion may arise due

termined by the correlated charges, but rather by one of tht® the presence of frozen charge distributions on the plates

incoherent minima, and random alignment at contact will(cleaved mica plates have potassium ions on their surface,

result(the case discussed in the previous paragraph which dissociate in aqueous environment leaving behind
Finally, we considered a situation of the type encounteredi€gatively charged surfagesVe would like to thank Isaac

in studies of the physics of friction, and evaluated the typicafreund, ldo Kanter, Yacov Kantor, and Aleksei Tkachenko

minimal force needed to produce parallel displacement ofor helpful comments and discussions. S.P. would like to

two randomly Charged p|ates Separated by a d|Starfcem thank the Depal’tment Of P'hyS|CS, Bar-”an U'nlverSIty, for

each other. When the separation between the plates is sufffospitality during his stay in Israel where this work was

ciently small, the system will be trapped in a configurationdone. Y.R. acknowledges financial support through a grant

that corresponds to one of the multiple energy minima, androm the Israel Science Foundation.

relative motion will occur only when the magnitude of the

force exceeds some critical value that depends on the height APPENDIX

of the energy barriers. As a result, stick-slip motion will

occur under typical experimental conditions. This phenom- In Sec. Il we replacedN,,(E) with its average over the

enon is the analog of static friction between solids in contactensemble of objects with quenched disorder. In general, the

A complete treatment of solid friction, including dynamic above procedure is questionable because of the possibility of

friction, must account for the energy dissipation produced byintermittencywhich occurs when the main contribution to

this relative motion, and is beyond the scope of this work. averages comes from atypical configurations of the disor-
Our theory applies to objects of arbitrary sigmicro- dered system and, therefore, the value of some physical

scopic as well as macroscopidlthough in this work we quantities in a typical realization of the disorder cannot be
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represented by its average over the quenched ensdsagefor example, spin glas4&3). We proceed to check whether such
problems arise in our model.

Consider the variation of the number of energy minima per unit en&gy,(E), for different realizations of the disordered
charge distribution on the rods. A possible way to check whether intermittent behavior arises in our theory is to estimate higher
order moments of the functioN,,(E). Repeating the steps which led to Ef9), we obtain

— S (v dkgj
Nmin(E)—q];[l “0 duqf dAA H >

J 1

2
Xexg i X kgE+iX keghq— 5= 2 DIV Kgikgn |, (A1)
q a jl.aq’
DY =DJyq + D' (1 Syq)- (A2)
Here the matriXD is defined in Eq(20), andD’ depends omig—ug,
mo(h) 770(uq_uq/) 0 _ml(h)nl(uq_uq/)
D' = 0 my(h) 71(ug—Ugq/) 0 : (A3)
—my(h) nl(uq_uq’) 0 mz(h)ﬂz(uq—uq')
|
The functionzg(u) is given by expression fore, sensitive to intermittency effects. Using the replica
L trick, InZ=lim,,_,o(Z"—1)/n (for arbitraryZ), we obtain
u=— dr V(r)V(r+u), A4
7o(W= 1 | arvioviru) A9 Nl E) = N )
2
and the integralsy; and 7, are defined in Eq(33). . 9L | o |nNmm(E) f dr V(1)
Note that if we neglect the nondiagonal te® in Egs. 2L |
(A1) and(A2), we obtainNJ,(E)=[Nmi,(E)]". We can esti- (A6)
mate the contribution of this term by treating it as a small
perturbation. To first order iD’, we obtain In all physically relevant situations, some degree of screen-
2 1 ing is present, and the integral over the potential converges.
NT (E)=[Nor(E)]" g_/ n(n—-1) Since 9 INNyin(E)/7E=h/g?L [see Eq.(30)], the variance
L 2 of InNin(E) is of orderh/L’, and we conclude that intermit-

2 tency effects come into play only when the separation be-
J “"Nmm(E) tween the rods exceeds the length of the longer rod, i.e.,
—_— dr V()| ;. (A5 -
when the average number of energy minima becomes of the
order of or smaller than unity. It can be shown that the cor-
This expression can be used to estimitéN,,(E), which  responding correction in the case of two randomly charged
contains information about all the moments, and is, thereplates in the presence of screening is of ordetA) !

[1] V. S. Pande, A. Y. Grosberg, and T. Tanaka, Proc. Natl. Acad. [7] L. Stryer, Biochemistry 4th ed.(Freeman, New York, 1995

Sci. USA91, 12 972(1994. [8] J. Israelachvili,Intermolecular and Surface Forceg€nd ed.
[2] M. Mezard, G. Parisi, and M. Virasor&pin Glass Theory and (Academic, London, 1992
Beyond(World Scientific, Singapore, 1987 [9] J. Klein, D. Perhia, and S. Warburg, Natt®ndon 352 143
[3] S. Panyukov and Y. Rabin, Phys. R&89, 1 (1996. (1991).
[4] C. D. Sfatos, E. I. Shakhnovich, and A. M. Gutin, Phys. Rev.[10] We would like to thank Manfred Wilhelm for bringing this
E 51, 4727(1995. possibility to our attention.
[5] Y. Kantor and M. Kardar, Phys. Rev. Leftd, 421(1991). [11] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D.
[6] Selected Papers on Noise and Stochastic Processited by Watson,Molecular Biology of the Cell3rd ed.(Garland, New

N. Wax (Dover, New York, 1954 p. 212, Eq.(36-9. York, 1994.



