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Interaction between randomly charged rods and plates:
Energy landscapes, stick slip, and recognition at a distance

Sergei Panyukov* and Yitzhak Rabin
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 12 May 1997!

We study the interaction between randomly, irreversibly charged objects. We consider arbitrary relative
displacements of two parallel rigid rods and of two parallel rigid plates, and calculate the statistical properties
of the resulting energy landscape, such as the distribution of the energies of potential minima and maxima, the
depth, the radia of curvature, and the width and density of typical energy wells, as functions of the separation
between the objects and of the Debye screening length. We show that this complicated energy landscape may
lead to stick-slip phenomena during relative displacement of the plates. We study the case of perfectly corre-
lated charge distributions on the two objects, and show that the presence of long range forces may lead to
prealignment of the objects, even before contact. The relevance of our results to interacting biological systems
and to pattern recognition is discussed.@S1063-651X~97!11812-8#

PACS number~s!: 61.43.2j, 68.35.2p
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I. INTRODUCTION

The statistical physics of interacting many-body syste
deals with a thermodynamically large number of element
units ~atoms, spins, etc.!, each of which is described by
small number of parameters. This leads to a class of mo
in which complex physical behavior arises due to coope
tive behavior of a large number of such ‘‘simple’’ units.

In this work we consider a different class of interacti
systems, namely, that in which the number of parame
necessary to specify a single unit is very large. Due to
inherent complexity of the individual units, even a sm
number of such interacting objects can exhibit very comp
behavior. A generic system of this type consists of intera
ing objects on which a random distribution of charges
irreversibly placed. From the viewpoint of informatio
theory, such objects are of ‘‘maximal complexity’’ in th
sense that complete specification of the charge distribut
requires precise information about the location of each of
charges, the number of which can be arbitrary large, depe
ing on the size of the objects. In such systems, comp
behavior can already be observed at the level of two in
acting systems, the case considered in the present work

Aside from its maximal complexity, the motivation fo
the choice of a random distribution of the frozen charge
twofold. First, it is known that many biological system
such as proteins, can be described as nearly random as
blies of their constituents@1# ~amino acids!, each of which
interacts in a different way with its environment. The resu
ing potential energy surface that exists in the vicinity o
folded protein is extremely complicated. Since a rand
combination of positive and negative charges interact
through screened Coulomb forces can give rise to poten
surfaces of nearly arbitrary complexity, the theory presen
in this work can be considered as the simplest minim

*Permanent address: Theoretical Department, Lebedev Ph
Institute, Russian Academy of Sciences, Moscow 117924, Rus
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model of interaction between such ‘‘proteins.’’ Second, t
frozen randomness assumption allows us to use some o
powerful mathematical machinery that was developed for
study of systems with quenched disorder@2,3#.

A well known problem in polymer physics which appea
to be close to the present one is that of random block cop
mers @4#. One difference between the random copolym
models and the model studied in the present work ste
from the fact that long range interactions considered here
usually not taken into account in the former class of mode
More importantly, while we consider rigid objects~rods and
plates!, standard copolymer~and polyampholyte@5#! models
are based on the assumption that the ‘‘charges’’ are pla
on flexible chains and, therefore, while the linear structure
the polymers in these models is ‘‘quenched,’’ their thre
dimensional structure is ‘‘annealed’’~at least in the high
temperature phase!. In this sense random block copolyme
theories can be thought of as generic models for the fold
of proteins, while our theory of interacting rigid objects a
tempts to capture some of the features of the way fold
proteins interact with their environment.

In Sec. II we introduce the model of randomly and irr
versibly charged objects interacting through arbitrary lo
range potentials. The distribution function~number density!
of the energy minima generated by the relative displacem
of the two objects is defined and replaced by its average o
the quenched ensemble~this replacement is justified in th
Appendix!. In the following sections we consider two geom
etries: interacting parallel rods and interacting parallel pla
Although other geometries are also analytically tractable
will be considered in the future, the introduction of nonpa
allel orientations, and of other geometrical shapes, increa
the number of free parameters and obscures the basic ph
of the problem.

In Sec. III we calculate the distribution function of energ
minima for the case of two parallel randomly charged ro
We proceed to examine the statistical properties of the in
action energy landscape as a function of the distance
tween the rods, and calculate the depths, the radii of
curvature, and the widths of the energy minima and maxim

ics
a.
7053 © 1997 The American Physical Society
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7054 56SERGEI PANYUKOV AND YITZHAK RABIN
and the average distance between them. Explicit results
the above quantities are obtained for randomly frozen cha
distributions interacting via screened Coulomb forces.
study the variation of the position of a given minimum as
function of the separation between the rods.

In Sec. IV we carry out a similar program for interactin
randomly charged plates. We then apply our general res
to the study of the stick-slip problem, and estimate the cr
cal force which has to be applied in order to produce rela
displacement of the two plates. In Sec. V we study the
ergy landscape of perfectly correlated charge distributi
~mirror images! on the two plates, and discuss the possibil
of prealignment as they approach each other. The effec
partial correlation of the two charge distributions is also co
sidered. In Sec. VI we discuss the main results of this wo
and speculate on their relevance to interacting biological s
tems, random magnetic films, pattern recognition, etc.

II. MODEL

Consider two objects~two rigid rods or plates! on which
positive and negative charges with local charge dens
r i 1(x) and r i 2(x) ~the index i takes the values 1 and 2
corresponding to the two objects! are randomly and irrevers
ibly placed. The frozen~quenched! distribution of total
charge is given byr i(x)5r i 1(x)2r i 2(x) ( i 51,2). The
charges on the two objects interact via a potentialV ~for
example, a screened Coulomb potential!. We assume that the
two objects are parallel and separated by a distanceh from
each other and are allowed to undergo parallel displacem
by a vectoru, with respect to some arbitrary origin of coo
dinates~Fig. 1!. The interaction energy~which does not in-
clude the constant self-energy of the rods or plates! is given
by

E~u!5E E dx1dx2r1~x1!r2~x2!V~x12x22u!, ~1!

FIG. 1. Schematic drawing of~a! two randomly charged paralle
rods, one of lengthL and the other infinite, separated by a vertic
distanceh and displaced by a distanceu. ~b! A similar drawing of
two plates, one of areaA and the other infinite.
or
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where the integration is taken over all the points in the t
objects. We assume that the potentialV(x12x22u) depends
only on the distancer 5@(x12x22u)21h2#1/2 between the
points x1 and x21u on the two objects, and decays suf
ciently rapidly with r .

The assumption that the charges are randomly distribu
on the rods~plates!, with average charge densityr̄5 r̄1

2 r̄2 , leads to a Gaussian distribution of the quench
variations of densitydr i(x)5r i(x)2 r̄, with the second mo-
ment

dr i~x!dr j~x8!5gd i j d~x2x8!, ~2!

whereg[r̄11 r̄2 is the number density of charges, and t
bar denotes averaging over the ensemble of all possible
alizations of quenched disorder on the rods, with the pr
ability distribution

W@dr#5N21e2S@dr#, ~3!

where

S@dr#[E dx
dr2~x!

2g
, ~4!

and

N[E D@dr#e2S@dr# ~5!

is the normalization factor~*D@dr# denotes functional inte-
gration over the density variations!.

In order to avoid complications associated with t
change of overlap between the two rods of lengthsL andL8
~or two plates of areasA andA8! upon parallel displacement
we assume thatL!L8, and consider only relative displace
ments for which the two rods overlap~a similar assumption,
A!A8, is made for the case of two plates!. The energyE(u)
associated with a particular relative shift of the two obje
differs, in general, from the average interaction energyĒ,

Ē5 r̄ 2ME dx V~x!, ~6!

by an amountdE(u)5E(u)2Ē. HereM corresponds to the
length L or to the areaA, in the one~rods! and the two-
dimensional~plates! case, respectively, and the remainin
integration is over the coordinates of the larger object~L8
andA8 in the rod and the plate case, respectively!. In Fig. 2
we plot a typical energy landscapedE(u) which results from
the relative shiftu of two rods~this plot was generated by
computer simulation of the randomly frozen charge distrib
tions on the rods, with periodic boundary conditions!.

The number of energy minima~‘‘potential wells’’!
Nmin(E)DE with energy in the interval (E,E1DE) can be
obtained from the expression

Nmin~E!5(
extr

d@E2dE~u!#u@L2~u!#, ~7!

where the sum goes over the positionsu of all the energy
extrema, each of which is defined by the relati

l
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56 7055INTERACTION BETWEEN RANDOMLY CHARGED RODS . . .
]dE(u)/]u50. The u function in this expression ensure
that only energy minima are counted among all extrema.
two parallel rods,u is a scalar andL2(u)5]2dE(u)/]u2 is
the inverse squared radius of curvature of the energy m
mum, which is a measure of the ‘‘stiffness’’ of the effectiv
‘‘spring constant’’ associated with the potential well. In th
case of two parallel platesu is a two-dimensional vector, an
L2(u) is defined as the minimal eigenvalue of the matrix
second variations of the energy~1!, with components

Eab~u![
]2@dE~u!#

]ua]ub
. ~8!

This minimal eigenvalue is given by

L25E12AE2
2 1Exy

2 , E6[
Exx6Eyy

2
. ~9!

Note that if we change the sign of the potentialV, the
minima and maxima of the energy are interchanged. T
means that the distribution of the energy maxima is de
mined by the same function, Eq.~7!, with the substitution
Nmax(E)5Nmin(2E). In the two-dimensional case the e
trema of the energy include saddle points, and, in orde
carry out a complete classification of the extrema, we hav
introduce the maximum eigenvalue of the matrix~8!,

L15E11AE2
2 1Exy

2 >L2 . ~10!

We can identifyL2 and L1 with inverse squared radii of
curvatureof the potential wells along the principal axes
curvature. The caseL2.0 corresponds to energy minima
L1,0 to maxima, andL2,0, L1.0 to saddle points.

Since the sum in Eq.~7! goes over regions with differen
quenched disorder, for large enough rods and plates we
make the replacementNmin(E)→Nmin(E), where the bar de-
notes averaging over the ensemble of different realization
the quenched charge distributions on the objects~the justifi-
cation for this replacement is given in the Appendix!:

Nmin~E!5(
extr

d@E2dE~u!#u@L2~u!#. ~11!

FIG. 2. Plot of the energy landscapedE(u) ~in units ofgL1/2! as
a function of the relative displacementu ~in arbitrary units of
length!, for a randomly chosen realization of disordered charge
tributions on the rods. The solid line corresponds toh51, and the
crosses correspond toh50.5.
or

i-

f

is
r-

to
to

an

of

The expression on the right hand side of this equation
averaged over the distribution of the charge densitydr2 on
one of the objects with the probabilityW@dr2#, Eq. ~3!. We
would like to stress that the number of energy minima
determined only by the statistical properties of the froz
charge distributions, and does not depend on tempera
~temperature effects and the kinetics of interacting obje
are not considered in this work!. We now proceed to discus
the energy landscape of two parallel rods.

III. PARALLEL RODS

A. Distribution of energy minima

The sum over the positionsu of energy extrema in Eq
~11! can be transformed into an integral over the continuo
variableu,

(
ext

•••5E du(
ext

d~u2uext!•••

5E du d$]@dE~u!#/]u%u]2@dE~u!#/]u2u...,

~12!

where uext are the solutions of the equation]@dE(u)#/]u
50 ~in general, many such solutions exist!. In order to deal
with the u function in Eq.~11! we represent it in the form

u~L2@u# !5E
0

`

dL dH L2
]2@dE~u!#

]u2 J . ~13!

Substituting Eqs.~13! and ~12! into Eq. ~11!, and changing
the order of averaging overdr2 and integration overu
~which gives the lengthL8 of the ‘‘infinite’’ rod !, we obtain
the following representation for the energy distribution fun
tion:

Nmin~E!5L8E
0

`

dL L
1

N E D@dr2#e2S@dr2#

3d$]@dE~u!#/]u%d@E2dE~u!#d$L

2]2@dE~u!#/]u2%. ~14!

The standard way of handling such integrals is to use
exponential representation of thed functions

d@E2dE~u!#5E dk1

2p
exp $ ik1@E2dE~u!#%,

dH ]@dE~u!#

]u J 5E dk2

2p
expH 2 ik2

]@dE~u!#

]u J , ~15!

dH L2
]2@dE~u!#

]u2 J 5E dk3

2p
expH ik3FL2

]2@dE~u!#

]u2 G J .

Substituting these expressions into Eq.~14!, we can perform
the Gaussian integration over the density distributiondr2(x)
by shifting the variable of integrationdr2(x)→dr2(x)
1dr2* (x), wheredr2* is defined by

-
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7056 56SERGEI PANYUKOV AND YITZHAK RABIN
dr2* ~x![2 igE dx8K~x2x82u!dr1~x8! ~16!

and

K~x!5k1V~x!1k2]V~x!/]x1k3]2V~x!/]x2. ~17!

Substituting Eq.~16! into the definition ofS@dr2#, we ob-
serve that the productdr1(x)dr1(x8) in the integral over the
coordinatesx andx8 can be replaced by its average over t
length of the rod. In the ‘‘thermodynamic’’ limit~the length
of the shorter rodL is much larger than the average spaci
between the charges on the rod, 1/g! we can replace the latte
average by the quenched average~2!,

dr1~x!dr1~x8!→dr1~x!dr1~x8!5gd~x2x8!, ~18!

and arrive at the expression

Nmin~E!5L8E
0

`

dL L)
j 51

3 E dkj

2p

3expF ik1E1 ik3L2
g2L

2 (
j l

D jl kjkl G ,
~19!

where the matrixD has the form

D5S m0~h!

0
2m1~h!

0
m1~h!

0

2m1~h!

0
m2~h!

D . ~20!

The quantitiesmn(h) (n50,1,2,...) are the second momen
of the nth derivatives of the potential,

m0~h![2E
0

`

dr V2~r !, m1~h![2E
0

`

drF]V~r !

]r G2

,

~21!

m2~h![2E
0

`

drF]2V~r !

]r 2 G2

.

Performing the Gaussian integration over variableskj in
Eq. ~19!, we obtain

Nmin~E!5L8c̄E
0

`

dL P~L!P~EuL!. ~22!

Here c̄ is the average concentration of potential wells~num-
ber of potential minima per unit length of the rod of leng
L8! for parallel rods separated by a distanceh

c̄5
1

2p S m2~h!

m1~h! D
1/2

, ~23!

Note that the average distance between potential well
given by 1/c̄. For unscreened Coulomb interaction betwe
the rods, one can show thatm1;1/h3 and m2;1/h5, and
thus c̄;1/h ~i.e., the distance between the energy minima
of orderh!. We conclude that the density of energy minim
increases with decreasing separation between the rods
approaches the number density of chargesg at a distanceh
is
n

s

nd

.1/g which corresponds to the limit of validity of our mode
~at such separations the charge distribution can no longe
considered as continuous!. At this point the number of po-
tential energy minimaL8c̄ approaches the total number o
charges on the infinite rod,L8g.

In the case of screened Coulomb interaction between
charges, the potentialV given by

V~r !5
e2kAr 21h2

Ar 21h2
, ~24!

wherek21 is the Debye screening length~we set the con-
stant coefficient in front of this expression to unity!. The
qualitative picture discussed in the preceding paragr
remains valid in the rangeg21,h,k21. A straight-
forward calculation shows that in the limit of stron
screening (kh@1), m1;k1/2h25/2 exp(22kh) and m2
;k3/2h27/2 exp(22kh), and thereforec̄;(k/h)1/2. The con-
clusion that the concentration of energy minima at distan
exceeding the screening length is larger in the screened
in the unscreened Coulomb case, is quite unexpected. H
ever, as will be shown in the following, the energy of the
potential wells is exponentially reduced by screening effe

The functionP~L! which appears in Eq.~22!, is the prob-
ability of finding an energy minimum with a given stiffnes
~inverse squared radius of curvature! L

P~L!5
L

g2Lm2~h!
expF2

L2

2g2Lm2~h!G . ~25!

This function has a maximum atLmax5g@Lm2(h)#1/2 and de-
cays to zero for both large and small radii of curvature. T
function P(EuL) which also appears in Eq.~22! is the con-
ditional probability to find a minimum with energyE, given
that its stiffness isL,

P~EuL!5
1

~2psE
2 !1/2 expF2

@E2dEmin~L!#2

2sE
2 G . ~26!

Here, the average energy of a well with a given stiffnessL is

dEmin~L!52
m1~h!

m2~h!
L,0, ~27!

and we conclude that the depth of an energy well increa
on the average with its stiffness. AlthoughdEmin(L) is nega-
tive definite as expected, there is a nonvanishing probab
to find a potential well with energy higher than the avera
energy, i.e.,dE.0. This probability decreases rapidly wit
the stiffnessL. The squared deviation of the energy from t
average value

sE
25g2L@m0~h!2m1

2~h!/m2~h!# ~28!

does not depend on the well stiffnessL. For the unscreened
Coulomb case,sE.gAL/h, and the spread of the energie
of the minima increases ash21/2 when the rods approac
each other. In the presence of screening this result is
changed for distances smaller than the screening length
larger distances,sE decreases exponentially, as exp(2kh).



ta

-
rm
io
s-
a
x

te
th
fo
at
l-

-
io

a

en
om
t o
io

it

iv

ed

h

ed

b
dt
he

o

s
q.
l

-

nit

onds

56 7057INTERACTION BETWEEN RANDOMLY CHARGED RODS . . .
Averaging Eq.~27! over L with the distribution function
~25!, we obtain the average well depth

dEmin52
gm1~h!

4 S pL

m2~h! D
1/2

. ~29!

Repeating the same steps for the energy maxima we ob
the average height of energy maximadEmax52dEmin .

Note thatdEmin}AL, and since for sufficiently large sys
tems the energy of attraction can easily exceed the the
energykBT, the frozen randomness of the charge distribut
on microscopic scales may result in ‘‘pinning,’’ i.e., the sy
tem will be trapped in one of the typical energy minim
Such effects can be observed by keeping the rods at a fi
distance and monitoring their stick-slip response to ex
nally applied tangential forces. In order to understand
nature of this response, we need to obtain additional in
mation about the energy landscape generated by a rel
translation of the parallel rods. This will be done in the fo
lowing.

Evaluating the integrals in Eq.~22! in the case of an un
screened Coulomb potential, we find that the funct
Nmin(E) can be written in a universal form:

Nmin~E!5
L8

gAhL
pminFE

g S h

L D 1/2G ,
where

pmin~y![
&

16p2 expS 2
y2

2p D
3F5 expS 2

y2

25p D1y erfS y

5Ap
D 2yG , ~30!

where erf is the error function. Expressions of these types
familiar from theories of stochastic processes~e.g., Gaussian
random currents!. For example, there is an analogy betwe
the current intensity as a function of time and the rand
interaction energy as a function of relative displacemen
the rods. The expression for the probability density funct
of maxima of the intensity of random noise currents@6# re-
sembles Eq.~30!.

In Fig. 3 we plot the number of energy wells per un
energy and unit length,Nmin/L8, as a function ofdE, for
several values ofL/h ~for the unscreened Coulomb case!.
Although the distribution is always peaked at a negat
value of dE @see Eq.~29!#, there is a finite probability of
observing a potential well with a positive value ofdE. This
reflects the possibility of having local energy minima locat
inside broad energy maxima~see Fig. 2!. Note that the dis-
tribution broadens and shifts to more negative values wit
closer approach between the rods.

B. Width of the energy minima

The width of a potential well cannot be directly estimat
from a knowledge of local characteristics of its minimum
and one has to consider the shape of the energy profile
tween two neighboring energy extrema. We define the wi
of the well w as the distance between the position of t
in

al
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ed
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e
r-
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re

f
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e
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,
e-
h

minimum and the position of the neighboring maximum. T
estimate this value we introduce the numberc(Luw) of wells
per unit length with a given stiffnessL.0 and separated by
the distancew from a maximum with an arbitrary stiffnes
L8,0. Repeating the steps which led to the derivation of E
~14!, we find the following expression for this conditiona
probability:

c~Luw!

5E
2`

0

dL8LuL8u
1

N E D@dr2#e2S@dr2#

3d$]@dE~u!#/]u%d$L2]2@dE~u!#/]u2%

3d$]@dE~u1w!#/]u%d$L82]2@dE~u1w!#/]u2%.

~31!

The functional integral overdr2(x) can be calculated as be
fore, with the result

c~Luw!5g24L22@12h1
2~w!#21/2@12h2

2~w!#21/2

3
1

~2p!2m1m2
E

2`

0

dL8LuL8u

3expH 2
L21~L8!222h2~w!LL8

2g2Lm2@12h2
2~w!# J , ~32!

where we defined

h1~w![
1

m1
E

2`

`

dr
]V~r !

]r

]V~r 1w!

]r
,

~33!

h2~w![
1

m2
E

2`

`

dr
]2V~r !

]r 2

]2V~r 1w!

]r 2 .

FIG. 3. Plot of the number of minima per unit energy per u
length, Nmin(E)/L8, as a function of the energydE, for different
vertical separations between the rods. The broken line corresp
to h5L, and the solid line toh50.1L ~the density of chargesg is
unity!.
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7058 56SERGEI PANYUKOV AND YITZHAK RABIN
Performing the integration over the stiffness of the maxim
L8, in Eq. ~32!, and recalling the expressions for the co
centration of minimac̄, Eq. ~23!, and for the distribution
function of the stiffness of energy minimaL, Eq. ~25!, we
obtain

c~Luw!5 c̄ 2P~L!q~Luw!,

where

q~Luw!5S 12h2
2~w!

12h1
2~w!

D 1/2

expF2
L2

g2Lm2@h2
22~w!21#G .

~34!

In order to obtain some intuition about the dependence
this function onw, we consider two limiting cases. In th
limit w→` we obtainq(Luw→`)51. The presence of the
prefactor c̄2 in the above expression forc(Luw) @the first
line in Eq. ~34!# expresses the fact that the correlation b
tween minima and maxima disappears in this limit and
joint probability of observing a minimum and a maximum
given by the product of the concentrationc̄P(L)DL of en-
ergy minima with givenL and of the concentration o
maximac̄ @which is the same as the concentration of minim
Eq. ~23!#. In the limit of smallw we can expand the integra
in Eq. ~33! in powers ofw, and obtain

q~Luw!.
Am1m3

m2
expS 2

L2

w2g2Lm3
D , w!S m2

m3
D 1/2

,

~35!

where

m3[2E
0

`

drF]3V~r !

]r 3 G2

. ~36!

Inspection of Eq.~35! shows that the probability of observin
an energy minimum and an energy maximum separated
distancew tends rapidly to zero whenw→0. This confirms
the intuitive expectation that a maximum and a minimu
cannot coincide. For fixedw this probability decreases rap
idly with the stiffness of the minimum,L. The reason for this
is that stiffer potential wells are characteristically deeper th
shallow ones and, as expected, the concentration of sha
minima is much larger than that of deep~and stiff! ones.

The average widthw(L) of a well with curvatureL can
be estimated from the condition that the probabil
q(LuwL) to find the maximum at a distancew from this well
is about one-half~at distances much smaller than this wid
the probability goes to zero, and at much larger distance
goes to unity!. For wells with curvature smaller than th
typical one@which corresponds to the maximum of the d
tribution P~L!, Eq. ~25!#, Lmax5g(Lm2)

1/2, we can use the
asymptotic expression~35! and obtain

w~L!.
L

gALm3

. ~37!

In the opposite limit,L@Lmax, the average width of the
minima is determined from the equationh2@w(L)#
5Lmax/L. In the unscreened Coulomb casew(L)
,
-

f

-
e

,

a

n
w

it

;h3/2L1/5, i.e., the width of the minimum is a weakly in
creasing function of its stiffness.

The average width of an energy well is defined as

w~Lmax!.Fm2~h!

m3~h!G
1/2

. ~38!

As expected, this average width is of the same order as
average distance between the typical minima,c̄ 21 @see Eq.
~23!#, i.e., thecharacteristic minima form a densely packe
random lattice. At distances smaller than the screeni
length the average spacing of this lattice is of the order of
spacing between the rodsh and at larger distances it i
(h/k)1/2. Since both the curvature and the width of shallo
energy wells are small, and since the probability to obse
uncharacteristically deep wells is exponentially small, the
sulting energy landscape does not have a fractal chara
~i.e., it is smooth!.

As a byproduct of the above calculation we can obt
more detailed information about the distribution of extrem
in our problem. The integrand in Eq.~31! gives the probabil-
ity to find two extrema with given inverse radii of curvatu
L andL8, separated distancew from each other. Integrating
this function over positiveL andL8, we find the correlation
function of concentration of energy wells

c~r !c~r 1w!5
2c̄ 1

2@12h2
2~w!#3/2

@11h2
2~w!#@12h1

2~w!#1/2, ~39!

which behaves asw2 on small distancesw. The correlation
between minima is lost on distances of order of the aver
spacing between the characteristic energy wells.

C. Dependence of the well parameters onh

We now consider what happens with a given energy m
mum when we change the distanceh between plates by a
small valuedh. There are two types of changes: the min
mum is displaced by the vectordu5(]u/]h)dh, and its
depth and curvature change. Differentiating the equation
the extrema,]@dE(u)#/]u50, with respect toh, and taking
into account both the implicit and the explicit dependence
the energy onh, we find

]u

]h
52

]2@dE~u!#/]u]h

]2@dE~u!#/]u2

52
Q

L
where Q[

]2@dE~u!#

]u]h
. ~40!

The derivative]u/]h varies from one well to another, an
according to Eq.~40!, its distribution for energy minima with
a given stiffnessL is determined by the distribution of th
random variableQ. The distribution function of this quantity
is defined by the same expression as the energy distribu
function, Eq. ~14!, in which we substitute d$Q
2]2@dE(u)#/]u]h% instead ofd@E2dE(u)#. We shall not
repeat the mathematical details of the derivation, which
analogous to the derivation of Eq.~26! for the conditional
distribution function of energyE. The final result for the
conditional distribution function ofQ for wells with given
stiffnessL is
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P~QuL!5
1

~2psQ
2 !1/2 expF2

Q2

2sQ
2 G , ~41!

wheresQ
2 is defined by

sQ
2 5g2LH 2E

0

`

drF]2V~r !

]h]r G2

2
1

4m1~h! F]m1~h!

]h G2J .

~42!

Turning back to Eq.~40!, we conclude that the distributio
function of the variation of well displacement with the di
tance between the rods for minima with a given stiffnessL is
Gaussian, with zero average and the second moment

S ]u

]hD 2U
L

5
sQ

2

L2 . ~43!

We conclude that whereas soft potential minima unde
arbitrarily large random displacements from their initial p
sitions under small variations of the distanceh between the
rods, the positions of stiff~and deep! minima change very
slightly ~as evident from Fig. 2!. If one considers the dis
placement of the most probable minima, one finds t
(]u/]h)2 is of order unity, and therefore this displacement
of the same order as the change of the spacing betwee
rods,dh.

The same procedure can be used to find the change o
well stiffnessdL5(]L/]h)dh. Proceeding analogously t
the derivation of expression~27!, we obtain

]L

]h
U

L

5
L

2

] lnm2~h!

]h
. ~44!

In order to obtain the dependence of the stiffness of the
erage potential well on the distanceh between rods, we in-
tegrate this equation and obtain

L̄~h!5L̄~h0!@m2~h!/m2~h0!#1/2. ~45!

In the unscreened Coulomb case the stiffness of an ave
minimum is a strongly decreasing function of the distan
between the rods,L̄(h);h25/2. Equation~45! shows that the
distribution P(L) of the radii of curvature of the energ
minima, Eq.~25!, is invariant with respect to the change
the distance between rods. Thus, when the two rods appr
each other, existing minima do not disappear and beco
progressively stiffer and deeper. At the same time, new s
low minima appear, and grow in depth ash is reduced. It is
interesting to note that while the former behavior~deepening
of existing energy minima! would be observed even if th
charges on the two rods were placed on periodic lattices,
appearance of new minima upon closer approach is a c
acteristic signature of the randomness of the two charge
tributions.

D. Scaling estimate

The above observations allow us to introduce a sca
estimate which takes a particularly simple form in the case
unscreened Coulomb interaction between the rods. If we
not interested in the details of the distributions of the para
o

t

the

he

v-

ge
e

ch
e
l-

he
ar-
is-

g
f
re
-

eters of the energy minima but only in the averages of th
parameters over the frozen charge distributions, we can
place the microscopic charge distribution by one that
coarse grained over a length scaleh ~the distance between
the rods!. Each such electrostatic ‘‘blob’’ containsgh
charges of both signs, and thus the total charge per blob
orderQh56(gh)1/2. Since there areL/h such blobs, and the
average interaction energy between the rods vanishes~as-
suming that there is no net charge on the rods!, dE can
written as the sum of interaction energies ofL/h neighboring
blobs on the two rods. Each one of the contributions is
random function which takes the values6Qh

2/h, and there-
fore the total interaction energy is also a random quan
with zero average and characteristic deviation

dE.6S L

hD 1/2 Qh
2

h
56gS L

hD 1/2

, ~46!

in agreement with the exact result, Eq.~29!.
The above scaling picture can be used to answer the

lowing question: let us assume that the system ‘‘sits’’ in o
of the characteristic minima with energydEmin given by Eq.
~29!. How many charges on the shorter rod must change t
positions for this minimum to disappear? This number,t, can
be estimated as follows. The interaction energy can be
creased by changing the charge distribution in a way t
decreases the attraction or increases the repulsion betw
each of the two neighboring blobs on different chains. T
change of the interaction energy associated with this re
tribution of chargestQh /h should then be equated t
udEminu. This gives

t.AgL!gL, ~47!

i.e., the number of charges that should be rearranged for
minimum to disappear is of the order of the square root
the total number of charges on the shorter rod~and does not
depend on the distance between the rods!. This estimate may
be relevant to biological systems in which the effective
teraction between the objects can be controlled by bioche
cal means~e.g., by protonation, phosphorylation, etc.@7#!.

IV. PARALLEL PLATES

A. General analysis

In the case of two parallel plates we can transform
sum over the positions of energy extrema in Eq.~11! into an
integral over the continuous variableu,

(
ext

•••5E du d$]@dE~u!#/]u%det@Eab~u!#•••

5E du d$]@dE~u!#/]u%L2~u!L1~u!..., ~48!

where the matrixEab is defined in Eq.~8!. The minimalL2

and the maximalL1 eigenvalues of this matrix were define
in Eqs. ~9! and ~10!. Analogously to the one-dimensiona
case, Eq.~13!, we use the equality
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L2~u!L1~u!u@L2~u!#5E
0

`

dL2E
L2

`

dL1L2L1

3d@L22L2~u!#

3d@L12L1~u!#, ~49!

Substituting Eqs.~49! and ~48! into Eq. ~11!, and changing
the order of averaging overdr2 and integration overu
~which gives the areaA8 of the infinite plate!, we obtain the
following representation for the energy distribution functi

Nmin~E!5A8E
0

`

dL2E
L2

`

dL1L2L1

3E E E dE1dE2dExyC~E,E1 ,E2 ,Exy!

3d~L22E11AE2
2 1Exy

2 !

3d~L12E12AE2
2 1Exy

2 !. ~50!

Later we will show that the function

C~E,E1 ,E2 ,Exy!

[
1

N E D@dr2#e2S@dr2#dH ]@dE~u!#

]u J
3d@E2dE~u!#)

j
d@Ej2Ej~u!#

[C~E,L2 ,L1! ~51!

depends onE6 andExy only through their combinationsL2

and L1 , Eqs.~9! and ~10!, and therefore, it can be move
outside the integrals overE6 andExy in Eq. ~50!. Perform-
ing these integrations, we recast Eq.~50! in the form

Nmin~E!5
pA8

2 E
0

`

dL2E
L2

`

dL1L2L1

3~L12L2!C~E,L2 ,L1!. ~52!

We use the following exponential representation of thd
functions in Eq.~51!:

d@E2dE~u!#5E dk

2p
exp$ ik@E2dE~u!#%,

~53!

dH ]@dE~u!#

]u J 5E dp

~2p!2 expH 2 ip•

]@dE~u!#

]u J ,

d@Ej2Ej~u!#5E dqj

2p
exp$ iq j@Ej2Ej~u!#%.

Substituting these expressions into Eq.~51!, performing the
Gaussian integration over the density distributiondr2(x),
and using the two-dimensional analog of Eq.~18!, we obtain
C~E,E1 ,E2 ,Exy!

5E dk

2p E dp

~2p!2 )
j
E dqj

2p

3expH ikE1 i(
j

qjEj2
g2A

2

3@p2m18~h!1k2m08~h!1~2q1
2 1q2

2 1qxy
2 !m28~h!

22kq1m18~h!#J , ~54!

where the integralsmk8(h) are defined by expressions

m08~h![2pE
0

`

dr rV2~r !, m18~h![pE
0

`

dr r F]V~r !

]r G2

,

~55!

m28~h![E
0

`

dr r F]2V~r !

]r 2 2
1

r

]V~r !

]r G2

.

The above moments can be evaluated explicitly in the c
of screened Coulomb interaction between the plates. We

m08~h!52p Ei~2kh!,

m18~h!5pk2Fe22kh
~112kh!

~2kh!2 2Ei~2kh!G ,
~56!

m28~h!5pk4FEi~2kh!1
e22kh

8~kh!4

3~316kh12k2h224k3h3!G ,
where Ei denotes the exponential integral function.

As can be directly checked from Eq.~54!, the functionC
depends on valuesE1 and E2

2 1Exy
2 and, therefore, onL2

and L1 only. Performing the Gaussian integrations in E
~54! and substituting the resulting functionC(E,L2 ,L1) in
Eq. ~52!, we finally find

Nmin~E!5A8c̄E
0

`

dL2E
0

`

dL1P~L2 ,L1!P~EuL21L1!,

~57!

The average~surface! concentration of potential wells is
given by

c̄5
1

2p)

m28~h!

m18~h!
. ~58!

For the unscreened Coulomb case this yieldsc̄.h22, and
the number of energy minima is of orderA8/h2. At distances
exceeding the screening length we obtainc̄.k/h. In Fig. 4
we plot this concentration as a function of the distance
tween the plates, for several values of the screening len
k21.

The functionP(L2 ,L1) is the normalized probability
distribution to find a potential well with two principal invers
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squared radii of curvatureL2 andL1.0 ~here we write out
this function in a symmetrized form with respect toL2 and
L1!,

P~L2 ,L1!5S 3

p D 1/2 L2L1uL12L2u
16@g2Am28~h!#5/2

3expF2
3L2

2 13L1
2 22L2L1

16g2Am28~h! G . ~59!

This function is peaked aboutL1.3g@Am28(h)#1/2 andL2

.1.34g@Am28(h)#1/2 ~i.e., the most probable energy wells a
asymmetric! and vanishes for large and smallL6 . In Eq.
~22!, P(EuL21L1) is the conditional probability to find the
energy minimum with energyE if its inverse squared prin
cipal radii of curvature areL2 andL1 @it depends only on
the mean stiffness, (L21L1)/2#:

P~EuL21L1!5
1

~2psE
2 !1/2 expF2@E2dE~L21L1!#2

2sE
2 G ,

~60!

where the average energy of a well with the givenL2 and
L1 is

dE~L21L1!52
m18~h!

m28~h!

L21L1

2
,0, ~61!

and the standard squared deviation of energy from this a
age

sE
25g2A@m08~h!2m18

2~h!/„2m28~h!…#. ~62!

For unscreened Coulomb interaction between the platessE
2

.g2A ln(A8/h2). This logarithmic divergence disappears
the case of a finite screening lengthk21. In the limit h
!k21!(A8)1/2, the above logarithm is replaced b
2 ln(1/kh). For rod separations exceeding the screen
length,sE decreases exponentially withkh.

Averaging Eq.~61! over L6 with the distribution func-
tion ~59!, we obtain the average well depth

FIG. 4. Plot of the concentration of energy minimac̄ as a func-
tion of the vertical separation between the platesh ~in arbitrary
units of length!. The solid line corresponds tok51, and the broken
line to k510.
r-

g

dEmin528gm18~h!S A

3pm28~h! D
1/2

. ~63!

As in the two-rod case, the average height of energy max
is simply dEmax52dEmin . Symmetry considerations imply
that the average value of the energy corresponding to sa
points is zero.

In the unscreened Coulomb case, Eq.~63! gives dEmin
.gA1/2, independent of the distance between the plates.
expected, the average depth of the energy minima dec
exponentially with the separation between the plates at
tances exceeding the screening length~Fig. 5!. Finally, we
would like to stress that, contrary to the usual considerat
of electrostatic interactions between two charged pla
where the presence of electrical double layers must be ta
into account@8#, such effects are unimportant for random
charged plates, where the total charge in any finite region
the plates vanishes on the average, and condensation o
counterions on the plates is not expected to play an impor
role.

B. Stick slip

Up to this point we considered the case of two random
and irreversibly charged objects, and assumed for simpli
that the total charge on each object vanishes. A differ
situation which may, in principle, be realized in experimen
utilizing the surface force apparatus~when the device oper
ates in the shear mode@9#!, is when the two parallel interact
ing surfaces are randomly charged, with average charge
sity r̄. In this case there will be average electrosta
repulsion between the plates, and one has to apply a no
force in order to maintain the separation between them.

What happens if we attach a spring to one of the pla
~say plate 2, with areaA8! and move the other plate~plate 1,
with areaA! by a distanceu parallel to it? If the distribution
of charge on the plates is uniform, there will be no restor
forces associated with this displacement, and plate 2 will
move. We now assume that the charge distributions on

FIG. 5. Plot of the average energy of the minima,dEmin ~in units
of gA1/2!, as a function of the separation between the platesh ~in
arbitrary units of length, for different values of the inverse scre
ing lengthk: 1 ~solid line!, 0.2 ~circles!, and 5~crosses!.
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7062 56SERGEI PANYUKOV AND YITZHAK RABIN
two plates are randomly frozen~and uncorrelated! and pro-
ceed to analyze the response of plate 2 to the displaceme
plate 1~see Fig. 6!.

As we have showed in Sec. IV A, the presence of froz
random charge distributions on the plates leads to the app
ance of a large number of energy minima which corresp
to different relative parallel displacements of the plat
Since, for macroscopic plates, the typical energy associ
with these minima scales asA1/2, for sufficiently large plates
it can be much larger that the thermal energykBT and the
plates will ‘‘get stuck’’ in one of the minimal energy con
figurations. The electrostatic repulsion between the pla
scales asA and, therefore, the normal force needed to ke
the plates at a fixed separation from each other will be do
nated by the average repulsion, and will not be significan
affected by the relative displacement.

The presence of these minima will lead to the appeara
of macroscopic restoring forces for relative displacemen
the plates@10#. We showed earlier that the depth of an e
ergy minimum has a typical valuedEmin @Eq. ~63!#. Since
such energy wells are densely distributed with respect to
relative displacement of the plates, the system will occu
one of these characteristic minima. Plate 2 will move
gether with plate 1~stick phase! until the force on it exceeds
some critical valuef crit at which point it will recoil back
~slip!. This value can be estimated from the characteristic
the typical energy well:

f crit.F S ]E~u!

]u D 2 G1/2

5gAAm18~h!,

wherem18(h) is defined in Eq.~56!. For unscreened Coulom
interactions this yields the simple relationf crit.gA1/2/h. In
the presence of screening this force decays exponent
with separation between the plates, and stick slip is expe
only at separationsh<k21 ~and can be suppressed by t
addition of salt!.

When the critical force is exceeded, plate 2 will rec
back to a position in which the spring force becomes su
ciently small. The process will repeat itself as long as
continue to drag plate 1, and stick-slip motion of plate 2 w

FIG. 6. Schematic drawing of a stick-slip type experiment. T
two plates are separated by a distanceh, and undergo parallel trans
lation by a distanceu.
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be observed. Note that each time the critical spring force
exceeded, plate 2 recoils to a new position which cor
sponds to one of the typical energy minima and, since
general, there are many such minima, a statistical sprea
equilibrium positions of the lower plate will result.

Note that the value of the critical force depends only
the properties of the energy landscape of the interac
plates, and not on experimental details such as the sp
constant, etc. Our estimate of the critical force defines
minimal force that has to be applied in order to initiate re
tive motion of the two plates. This force is analogous
static friction between two solids in contact.

V. CORRELATED DENSITY PATTERNS
AND RECOGNITION AT A DISTANCE

Up to this point we assumed that the random distributio
of frozen charges on the plates are uncorrelated. We n
consider a different class of problems, i.e., the case of str
correlation between the charge distributions on the plates
particular, we will consider a situation which has an impo
tant analog in biology, namely, that of two plates whi
would stick to each other when brought into contact in
particular relative orientation~the random version of the
‘‘lock and key’’ principle!.

Consider two identical circular discs of areaA such that
the charge distribution on one disc is the mirror image of t
on the other one~the charge distributions are identical exce
that each positive charge on one disc is replaced by a n
tive one on the other, and vice versa!. This charge distribu-
tion is random and frozen and we assume that the t
charge on each of the discs vanishes. This system has a
defined minimal energy configuration at contact, name
that of exact overlap of the two mirrored charge distrib
tions. We now proceed to calculate the energy landscape
two such parallel discs of radiusR separated by a horizonta
distanceu and a vertical distanceh and rotated by an anglew
with respect to the direction which corresponds to ex
overlap of the two charge distributions.

Under the conditions of the model, the number density
charges on disc 1,r1(x,y), is a random quantity with
quenched average

r1~x,y!r1~x8,y8!5gd~x2x8!d~y2y8!, ~64!

andr2 is related to it by translation and rotation,

r2~x,y!5r1~ux1x cosw1y sinw,uy2x sinw1y cosw!,
~65!

whereux anduy are the components of the relative displac
ment of the two disks in the plane parallel to the discs. Sin
the charge distributions on the two plates are correlated,
quenched average of the energyE(w,h,u) @defined in Eq.
~1!# does not vanish. For the unscreened Coulomb case
given by
Ē~w,h,u!52gE
0

2p

duE
0

R rdr

Au21h214r 2 sin2~w/2!14ru sin~w/2!sinu
. ~66!
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In Fig. 7 we plot the dependence of the interaction ene
Ē(w,h,u) as a function of the anglew, for h50.6R and u
50 and 1.4R. Note that the minimum atw50 (u50),
which corresponds to perfect alignment of the charge dis
butions, is much deeper than that at finitew (u51.4R). The
angular width of this minimum~at w50! decreases with
separation, and becomes vanishingly small in the li
h/R→0. Thus, although the depth of the minimum increa
when the two disks approach each other, a random searc
the ‘‘correct’’ ~i.e., minimal energy! configuration becomes
increasingly hard.

Although the above integrals cannot be calculated ana
cally, several comments can be made about the angula
pendence of the minima for different separations between
discs. For relative displacementsu,&h, the energy reache
its absolute minimum overw at w50, which corresponds to
perfect orientation of the two disks~the two distributions can
be brought into coincidence by pure translation, without
tation!. When the ratiou/&h becomes larger than unity, th
minimum is attained at a finite angle6w* , which increases
with this ratio. An analytical expression for this angle can
obtained whenu/&h is only slightly larger than unity. In
this regime,

w* 52S 9

7D 1/2 h

R S u

&h
21D 1/2

. ~67!

Note that this angle is proportional toh/R, and tends to zero
when the vertical distance between the discs becomes m
smaller than its radius~strong overlap regime!.

Another analytical result can be obtained in the limitu
@h andh!R. In this case we obtain

w* 5 H2 arcsin~u/R!

p
when u<R
when u.R, ~68!

i.e., the anglew* varies continuously from zero top when
the centers of the two nearly overlapping discs separate
horizontal distance corresponding to their radius.

Numerical investigation shows that a similar phenomen
takes place whenu increases at any fixed vertical separati
h: when u exceeds&h, the anglew* becomes finite, and
increases top at some value ofu determined by the relative

FIG. 7. Plot of the average interaction energyĒ(w,h,u) as a
function of the anglew ~in deg! which describes the deviation of th
mirror imaged charge distributions on the two discs from perf
alignment. The distance between the discs ish50.6R, and their
relative displacement isu50 ~lower curve! and 1.4R ~upper curve!.
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elevationh. For large vertical separations,h@R, the change
from w* 50 to w* 5p takes place in a narrow interval clos
to the line u5&h. Thus, when two plates approach ea
other from infinity at a fixed vertical distanceh, the relative
anglew* corresponding to the energy minimum rotates fro
p to zero~see the schematic drawing, Fig. 8! and the mini-
mum becomes progressively deeper. The physical reaso
this angular dependence of the energy becomes clear i
replace the charge distribution on each plate by a dipole,
consider the interaction between two such dipoles. Acco
ing to our mirror image construction, when the two discs a
placed above each other, the minimal energy configura
corresponds tow50, i.e., the orientations of the two dipole
are opposite to each other~in Fig. 8, the arrow on the lowe
disc gives the direction of its dipole moment; the arrow
the upper disc points opposite to its dipole moment!. When
they are displaced horizontally far enough from each oth
the minimal energy configuration becomes one in which
dipoles point along the same direction (w5p). The range at
which the minimum occurs at a finite value ofw corresponds
to relative positions of the discs in which the multipolar co
tributions to the interactions between the two frozen cha
distributions dominate over the dipolar ones. This range
comes narrower with increasing vertical separation and
sufficiently large separations, a nearly discontinuous tra
tion from w5p to w50 is expected to take place whe
u→&h.

Up to this point we considered only the quenched aver
of the interaction energy between the discs~‘‘coherent’’ con-
tribution!. In principle, we should also consider the me
square deviation from this average,dE2 ~‘‘incoherent’’ con-
tribution!. It can be shown that such incoherent contributio
are of the same order as the coherent ones for disc sep
tions much larger than their diameter. However, the inter
tion between the discs becomes strong only when the s
ration between them is significantly smaller than th
dimension (R). In this range the ratio of the coherent to th
incoherent contributions is of orderR/Ah21u2, and the in-
coherent contribution is negligible. At such separations
minimal energy configuration always corresponds to nea
perfect alignment of the charge distributions on the t
discs,w50.

t

FIG. 8. Schematic picture of the relative orientation of the m
ror imaged charge distributions on the two discs. One of the d
~shaded! is fixed at the origin, and the relative orientation of th
other disc, corresponding to the minimal energy configuration
different displacements, is shown. The orientations of the min
are w* 50 in the region to the left of the dotted curve andw*
5p to the right of the dashed curve. The region between the
curves corresponds to 0,w* ,p.
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In the above analysis we assumed perfect correlation
tween the frozen charge distributions on the two plates. If
charges on the two discs are only partially correlated,
attractive interaction will be reduced by a factora propor-
tional to the fraction of the correlated charges, and the in
herent contribution to the energy will remain unchanged. T
ratio of coherent to incoherent contributions will be reduc
by a factora, and therefore a strong energy minimum cor
sponding to alignment of the coherent charge distributi
will now appear only when the discs approach separation
orderaR. Thus perfect recognition of the correlated parts
the charge distributions on the two discs will still take pla
when they are brought into contact.

The discussion in this section may appear to be base
a somewhat artificial model, since the preparation of s
mirror imaged randomly frozen charge distribution may po
formidable difficulties. Note, however, that since the theo
makes no assumptions about the dimensions of the cha
objects, one can construct such a system by assembli
random array of negative and positive electrodes and t
constructing its mirror image. Another example to which t
general methodology described in this section can be app
is that of an array of parallel magnets with their north a
south poles randomly alternating along the normal to
array. A ‘‘mirror image’’ of this random array can be pre
pared in a thin ferromagnetic film which consists of diso
dered magnetic domains~with directions pointing randomly
in and out of the surface of the film!, if this film is brought
near the Curie temperature and placed in contact with
random magnetic array. A mirror image of the array w
form in the film, and can subsequently be frozen by decre
ing the temperature. The resulting magnetic interactions
tween the film and the array will vary with their separati
and relative orientation in a manner closely resembling
electrostatic model.

Finally, one can try to speculate on the relevance of
model to recognition in biological systems. Although ma
different types of attractive and repulsive interactions~elec-
trostatic, hydrophobic, hydrogen bonding, van der Wa
etc.! are present in these systems@11#, the resulting potentia
energy surfaces can be modeled by introducing random~or
partially correlated! distributions of effective charges. Th
justification for this statement is that the random combi
tion of attractive and repulsive long range forces in o
theory can give rise to effective interaction potentials of
bitrary complexity and, therefore, the theory can serve a
generic model of interactions between biological system
which perfect ‘‘lock-and-key’’ arrangement of the two ob
jects at contact is preceded by prealignment at a dista
when the separation of the approaching objects become
the order of their dimensions~or on the order of the Debye
screening length, in the presence of salt!. This prealignment
can provide a mechanism by which metastable ‘‘traps’’
contact can be avoided by sensing the energy landscap
distances where the energy barriers are small enough t
low the system to find the true energy minimum~for ex-
ample, when the depth of the coherent minimum is lar
than kBT and the depths of the incoherent ones are sma
than kBT, at separations of the order of the size of the o
jects!.
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VI. DISCUSSION

We studied the energy landscape generated by rela
translation of two random frozen charge distributions int
acting through long range electrostatic forces. Two sim
geometries were considered, for which the statistical prop
ties of this energy landscape can be calculated analytica
namely, two parallel rigid rods and two parallel rigid plate
We first examined the case of completely uncorrela
charge distributions on the two objects. We found that wh
the total charge on each of the objects vanishes and the C
lomb interaction between them is unscreened~i.e., when
there is no characteristic length scale associated with the
teraction potential!, the interaction between the objects b
comes significant and energy minima appear when the s
ration between these objects becomes of the order of t
dimensions~when the two objects are of different sizes, th
happens when the separation is of the order of the lin
dimensions of the larger of the two!. When the separation is
further decreased, these energy wells deepen, and new
appear. We calculated the distributions of energy minim
the depth and the width of the characteristic energy we
and the spacing between them, and showed that both
width and the spacings are of the order of the separa
between the objects. This indicates that the typical ene
wells are densely packed in the space generated by the
tive translation of the objects.

The above considerations apply to separations down
the average distance between the charges~h>g21 for rods
and h>g21/2 for plates, respectively!, at which point our
assumption of continuous charge distributions on the obje
breaks down. Strictly speaking, there is also an upper cu
on the distance between the objects; as shown in the Ap
dix for the two-rod case, the method of averaging over f
zen disorder used in this work becomes inaccurate for se
rations which exceed the linear dimension of the longer r
h>L8. Although, at larger separations, intermittency effe
not considered in this work may become important, su
corrections are of limited physical interest since in this lim
the average number of energy minima is of order unity a
their depth tends to zero. A more restrictive condition fo
lows from the fact that we did not explicitly introduce th
constraint of fixed total charge on each of the rods~we as-
sumed that it is fixed and, consequently, did not average o
the distribution of total charge on the rods!. It can be shown
that accounting for the fixed total charge constraint leads
corrections of orderh/L ~L is the length of the shorter rod! to
our results. These corrections produce a constant shift of
energy, and do not depend on the relative displacemen
the objects,u.

We found that although much deeper energy minima th
the typical ones may also exist, the probability of encount
ing them is exponentially small and they may or may not
observed in finite size systems, depending on the strateg
which the energy landscape is investigated. If two obje
approach each other in an adiabatic and unconstrained f
ion, due to temperature fluctuations or other sources of r
dom noise, they will be captured by the lowest minimum~it
is the first minimum to appear when the separation betw
them is of the order of their size!, whose depth increases an
whose position becomes pinned down~at some relative dis-
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placementu! upon further approach. When the experimen
repeated, the relative position of the two objects at con
will be faithfully reproduced. A different scenario take
place if the relative displacement of the randomly charg
objects is varied with some finite precision by externa
applied forces~allowing for small fluctuations of this dis
placement!. In this case, the system will jump between t
most probable energy minima and will not be able to find
lowest one. Since the number of these minima at contac
proportional to the number of charges on the objects,
relative positions at contact will not be reproduced when
experiment is repeated. The conclusion, that a random se
of the ground state of interacting random objects is m
efficient than any deterministically driven one, may have
teresting implications for biology and for information theor
A serious consideration of these questions is beyond
scope of this work, and requires a thorough study of
corresponding kinetics.

In the preceding paragraph we discussed the applica
of our model to studies of ‘‘recognition’’ for two uncorre
lated objects, in which one looks for ana priori unknown
spatial arrangement that optimizes the overlap between
two frozen charge distributions. We also studied a differ
limit of this problem, namely, that of perfectly correlate
charge distributions~mirror images!, for which the optimal
overlap configuration at contact is known and one would l
understand how this configuration is attained when the
objects approach each other. We found that the presenc
long range forces leads to remote ‘‘sensing’’ of correlatio
and raises the possibility of prealignment into the grou
state configuration before contact. The characteristic sep
tion at which the objects begin to sense the optimal rela
orientation is comparable to their linear dimension. If t
correlation between the charge distributions becomes im
fect due to the presence of defects, the sensing distan
reduced and, since the depth of the incoherent minima
creases with decreasing separation between the objects
system may fall into one of these ‘‘false’’ minima, and alig
ment between the correlated portions of the objects will
prevented. When the concentration of defects is further
creased, the ground state configuration will no longer be
termined by the correlated charges, but rather by one of
incoherent minima, and random alignment at contact w
result ~the case discussed in the previous paragraph!.

Finally, we considered a situation of the type encounte
in studies of the physics of friction, and evaluated the typi
minimal force needed to produce parallel displacement
two randomly charged plates separated by a distanceh from
each other. When the separation between the plates is s
ciently small, the system will be trapped in a configurati
that corresponds to one of the multiple energy minima, a
relative motion will occur only when the magnitude of th
force exceeds some critical value that depends on the he
of the energy barriers. As a result, stick-slip motion w
occur under typical experimental conditions. This pheno
enon is the analog of static friction between solids in conta
A complete treatment of solid friction, including dynam
friction, must account for the energy dissipation produced
this relative motion, and is beyond the scope of this wor

Our theory applies to objects of arbitrary size~micro-
scopic as well as macroscopic!. Although in this work we
s
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analyzed in detail the case of screened Coulomb interact
between the rods~and between the plates!, the generalization
to other types of interaction potentials is straightforward~we
only need to know the second moments of the potential
of its derivatives!. The combination of long range attractiv
and repulsive forces can be used to generate interaction
ergy landscapes of nearly arbitrary shape, and can serve
generic model for describing more complicated situations
which many types of interactions~e.g., electrostatic, hydro
phobic, van der Waals, etc.! act simultaneously. The main
ideas of this work can be applied to situations frequen
encountered in biological systems, where the distribution
the effective ‘‘charges’’ is fixed by chemistry, such as inte
actions between the surfaces of bacteria, interactions
tween folded proteins~in the latter case, temperature effec
which were not considered here, have to be taken into
count!, and other. One may object that our assumption
continuous charge distributions does not apply to ‘‘sma
systems such as proteins which contain, at most, several
dreds of amino acids. However, from the perspective
quantum chemistry, each amino acid is a ‘‘large’’ molecu
which is characterized by a complicated potential energy s
face. Furthermore, the potential field in the vicinity of a
amino acid depends on the details of the local environm
in which this molecule is located, e.g., on its neighbo
within the primary, secondary, and tertiary structure of t
protein, on the PH, etc. When viewed at this resolution,
potential field which exists in the vicinity of a large prote
may be not too different from that generated by a random
frozen charge distribution of the type considered in t
work. We cannot, of course, be certain at present that na
utilizes such long range interactions~their range is deter-
mined by the screening length! for recognition by prealign-
ment, yet the possibility that this is the case gives some h
that future extensions of the present model may have imp
tant implications for biology.
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APPENDIX

In Sec. II we replacedNmin(E) with its average over the
ensemble of objects with quenched disorder. In general,
above procedure is questionable because of the possibili
intermittencywhich occurs when the main contribution t
averages comes from atypical configurations of the dis
dered system and, therefore, the value of some phys
quantities in a typical realization of the disorder cannot
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represented by its average over the quenched ensemble~see, for example, spin glasses@2#!. We proceed to check whether suc
problems arise in our model.

Consider the variation of the number of energy minima per unit energy,Nmin(E), for different realizations of the disordere
charge distribution on the rods. A possible way to check whether intermittent behavior arises in our theory is to estimat
order moments of the functionNmin(E). Repeating the steps which led to Eq.~19!, we obtain

Nmin
n ~E!5 )

q51

n F E
0

L8
duqE

0

`

dLqLq)
j 51

3 E dkq j

2p G
3expF i(

q
kq1E1 i(

q
kq3Lq2

g2L

2 (
j l ,qq8

D jl
qq8kq jkq8 l G , ~A1!

Dqq85Ddqq81D8~12dqq8!. ~A2!

Here the matrixD is defined in Eq.~20!, andD8 depends onuq2uq8 ,

D85S m0~h!h0~uq2uq8!

0
2m1~h!h1~uq2uq8!

0
m1~h!h1~uq2uq8!

0

2m1~h!h1~uq2uq8!

0
m2~h!h2~uq2uq8!

D . ~A3!
a

re

ca

en-
es.

-
be-
i.e.,
the

or-
ed
The functionh0(u) is given by expression

h0~u![
1

m0
E

2`

`

dr V~r !V~r 1u!, ~A4!

and the integralsh1 andh2 are defined in Eq.~33!.
Note that if we neglect the nondiagonal termD8 in Eqs.

~A1! and ~A2!, we obtainNmin
n (E).@Nmin(E)#n. We can esti-

mate the contribution of this term by treating it as a sm
perturbation. To first order inD8, we obtain

Nmin
n ~E!5@Nmin~E!#nH 11

g2L

L8

n~n21!

2

3F ] lnNmin~E!

]E E
2`

`

dr V~r !G2J . ~A5!

This expression can be used to estimateln Nmin(E), which
contains information about all the moments, and is, the
ad

v

ll

-

fore, sensitive to intermittency effects. Using the repli
trick, lnZ5limn→0(Zn21)/n ~for arbitraryZ!, we obtain

lnNmin~E!5 lnNmin~E!

3H 12
g2L

2L8 F ] lnNmin~E!

]E E
2`

`

dr V~r !G2J .

~A6!

In all physically relevant situations, some degree of scre
ing is present, and the integral over the potential converg
Since ] lnNmin(E)/]E.Ah/g2L @see Eq.~30!#, the variance
of lnNmin(E) is of orderh/L8, and we conclude that intermit
tency effects come into play only when the separation
tween the rods exceeds the length of the longer rod,
when the average number of energy minima becomes of
order of or smaller than unity. It can be shown that the c
responding correction in the case of two randomly charg
plates in the presence of screening is of order (k2A)21.
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